Hydrological Model J2000

From ILMS-Wiki
Revision as of 11:12, 5 December 2009 by Claudia (Talk | contribs)
Jump to: navigation, search

The hydrologic model system J2000 offers a physical-based modeling of the water balance of big catchment areas. In addition to the simulation of hydrologic processes, which influence the runoff and its concentration in the upper meso- and macro scale, the modeling system contains routines that help to regionalize the punctual available climate values and precipitation values quite safely. Furthermore, the calculation of the real evaporation, with which the calculation is carried out area-differentiated in consideration of the Verdunstungsverhalten of different land use classes, is integrated into the model. Since the model shall be suitable for the modeling of big catchment areas of more than 1000 km², it is ensured that the modeling can be carried out by means of the available base data on the national scale. The simulation of the different hydrologic processes is carried out in program modules that are completed and as far as possible independent of each other. This offers to edit, substitute or add individual modules without the necessity to structure the entire model anew. The modeled total runoff is build up on the sum of the individual runoff components that are separately calculated during the modeling. The modeling system differentiates between four runoff components according to their specific origin. The component with the highest temporal dynamics is the fast direct runoff (RD1). It consists of the runoff of sealed areas, of snow water, which drains within snow layers, and of surface runoff when saturation areas develop. The slow direct runoff component (RD2), which can be regarded as similar to the lateral hypodermic runoff within the soil zone, reacts insignificantly slower. Two further basis runoff components can be distinguished. On the one hand, there is the fast basis runoff component (RG1) which simulates the runoff from surface-near well permeable weathering zones. On the other hand, there is a slow basis runoff component (RG2) which results as runoff from joint aquifer or homogeneous loose rock aquifer. The allocation of the precipitation water to the individual runoff components is carried out in the model on the basis of area parameters which can be derived from the applied base data. In addition to the relief shape, specific soil parameters, like the hydraulic conductivity of individual soil horizons, have an important influence. The calculation of the runoff components’ different Konzentrationszeiten is carried out in consideration of the hydraulic characteristics of the storages in which the individual components drain. Additionally, variable influences like the Vorfeuchte of the area are considered while modeling.


Contents

GUI

After starting JAMS, the main window, which contains several tabulators, opens: 

Main

thumb|left

  • Workspace directory: Sets up the working directory. It has to contain three further folders: parameter (for all parameter files), data (for all data files) and output (in which all output filed are written).
  • Time interval: Here the time interval is selected for which the model shall be carried out.
  • Caching: Here the results of some computationally intensive processes can be saved on the hard drive and can be used in further modeling runs. Thus, an insignificantly faster model run can be achieved. Warning: This feature is temporarily not completely safe and should only be applied by advanced users.








Initializing

thumb|left

  • Multiplier for field capacity : the maximum storage capacity of the middle pore storage (MPS) can be enlarged (value > 1) or reduced (value < 1).
  • Multiplier for air capicity: : the maximum storage capacity of the large pore storage (LPS) can be enlarged (value > 1) or reduced (value < 1).
  • initRG1: relative filling of the upper ground-water reservoir when starting the model (1 completely filled, 0 empty).
  • initRG2: : relative filling of the lower ground-water reservoir when starting the model (1 completely filled, 0 empty).



Plots&Maps

thumb|left

  • Runoff plot: activates the plot of the non modeled and measured runoff during the model run.
  • Soil moisture plot: activates the plot of the relative soil humidity during the model run.
  • Snow water equivalent: activates the plot of the snow water equivalent during the model run.
  • Map enable: enables to generate a cartographic map of selected status variables.
  • Map attributes: list of the status variables that shall be represented, separated by semicolon.
  • Map3D enable: enables to generate 3D output of a cartographic map of selected status variables.
  • Map3D attributes: list of the status variables that shall be represented, separated by semicolon.


Regionalization

thumb|left

  • number of closest stations for regionalisation: number n of stations that are used for the calculation of the data values of an HRU (then, the n stations that are nearest to the particular HRU are chosen)
  • Power of IDW function for regionalisation: weighting factor with which the distance of each station to the particular HRU is exponentiated.
  • elevation correction on/off: activates the elevation correction of the data values.
  • r-sqrt threshold for elevation correction: threshold for the elevation correction of the data values. If the coefficient of determination of the regression relationship between the station values and the elevations of the station less than this value, no elevation correction is carried out.

These settings can be determined for each input variable (i.e. minimum temperature, maximum temperature, mean air temperature, precipitation, absolute humidity, air temperature, sunshine duration) individually.




Radiation

thumb|left

  • Longitude of time zone center [dec.deg]: longitude to which the time zone of the test series refers. For CET it is 15° east, for example.
  • East or west of Greenwich [e|w]: is the area placed east (e) or west (w) of Greenwich.
  • daily or hourly time steps [d|h]: radiation calculation for daily (d) or hourly (h) modeling.
  • Parameter a for Angstroem formula [-]: Default value 0.25 (Note: The sum of a and b must not be more than 1). D
  • Parameter b for Angstroem formula [-]: Default value 0.5 (Note: The sum of a and b must not be more than 1).



Interception

thumb|left

  • a_rain [mm]: maximum storage capacity of the interception storage per m² of leaf area for rain
  • a_snow [mm]: maximum storage capacity of the interception storage per m² of leaf area for snow





SoilWater

thumb|left

  • MaxDPS [mm]: maximum Muldenrückhalt
  • PolRed [-]: polynomial reduction factor for the reduction of the potential evaporation for limited water supply.
  • LinRed [-]: linear reduction factor for the reduction of the potential evaporation for limited water supply.

(Note: PolRed or LinRed are alternatives. Only one of them can take a value, the other one needs to be set up on 0, then.)

  • MaxInfSummer [mm]: maximum infiltration in the summer half year
  • MaxInfWinter [mm]: maximum infiltration in the winter half year
  • MaxInfSnow [mm]: maximum infiltration when snow cover occurs
  • ImpGT80 [-]: relative infiltration capacity of areas with a sealed grade > 80%
  • ImpLT80 [-]: relative infiltration capacity of areas with a sealed grade < 80%
  • DistMPSLPS [-]: calibration coefficient for the allocation of the infiltration to the soil storage LPS and MPS
  • DiffMPSLPS [-]: calibration coefficient for the definition of the diffusion amount of the LPS storage contents according to the MPS at the end of the time interval
  • OutLPS [-]: calibration coefficient for the definition of the LPS runoff
  • LatVertLPS [-]: calibration coefficient for the allocation of the LPS runoff to the lateral (interflow) and vertical (percolation) component.
  • MaxPerc [mm]: maximum percolation rate
  • ConcRD1 [-]: retention coefficient for the direct runoff
  • ConcRD2 [-]: retention coefficient for the interflow


Snow

thumb|left

  • Component active: activates the snow module.
  • baseTemp [°C]: temperature threshold for snow precipitation.
  • t_factor [mm/°C]: temperature factor for the calculation of the snow melt runoff
  • r_factor [mm/°C]: rain factor for the calculation of the snow melt runoff
  • g_factor [mm]: factor of the soil heat flux for the calculation of the snow melt runoff
  • snowCritDens [g/cm³]: critical snow density
  • ccf_factor [-]: factor for the determination of the cold content of the snow cover


Ground Water

thumb|left

  • RG1RG2dist [-]: calibration coefficient for the allocation of the percolation water
  • RG1Fact [-]: factor for the runoff dynamic of the RG1
  • RG2Fact [-]:factor for the runoff dynamic of the RG2
  • CapRise [-]: factor for the setting of the capillary ascension



ReachRouting

thumb|left

  • flowRouteTA [h]: runtime of the discharge wave



When all parameters are set, the modeling is initiated via the button [Run]. A window opens which contains different tabulators. The tab [JAMSProgress] represents general information about the current model run in text form. If an error or problem occurs during the implementation, an error message possibly appears in this view. Furthermore, different efficiency criteria are given after the completion of the model run. These are:

e2 ... Nash-Sutcliff-efficiency with power 2 (classic form)

e1 ... modified Nash-Sutcliff-efficiency (differences are not squared but their absolute values are applied)

log_e2 ... modified Nash-Sutcliff-efficiency (the logarithm of the values are taken)

log_e1 ... modified Nash-Sutcliff-efficiency (the logarithm of the values are taken; differences are not squared but their absolute values are applied)

ioa2 ... index of agreement according to WILLMOT

ioa1 ... modified index of agreement according to WILLMOT (differences are not squared)

r2 ... coefficient of determination

grad ... slope of the regression line

wr2 ... coefficient of determination, weighted with the slope of the regression line

dsGrad ... Doppelsummengradient

AVE ... absolute volume error

RSME ... root mean square error

pbias ... relative percental volume error

The further tabs contain the plots and maps selected beforehand.


---

Input files

Input files are the temporal static parameters as well as temporal variable input data (climate values, precipitation values, runoff values). These are read in as ASCII-Files.

Generally, for all input files it is necessary that:

  • the separator is the tabulator
  • the decimal separator is the dot



Data

The modeling system J2000 expects the following data files for the model initialization:

name description unit
ahum.dat absolute humidity g/cm3
orun.dat measured flow passage at the runoff m3/s
rain.dat measured amount of precipitation mm
rhum.dat relative humidity  %
sunh.dat sunshine duration h
tmax.dat maximum temperature °C
tmean.dat mean air temperature °C
tmin.dat minimum temperature °C
wind.dat wind speed m/s


Each data file has the following structure (demonstrated here for the example of rainfall):

line description
#rain.dat rainfall
@dataValueAttribs
rain 0 9999 mm name of the data series, smallest possible value, biggest possible value, unit
@dataSetAttribs
missingDataVal -9999 value to mark missing data values
dataStart 01.01.1979 7:30 date and time of the first data value
dataEnd 31.12.2000 7:30 date and time of the last data value
tres d temporal resolution of the data (here: days)
@statAttribVal
name stat1 stat2 names of the gaging stations
ID 1574 1513 numeric name of the gaging stations (ID)
elevation 525 498 elevation station1, elevation station2
x 4402310 4422269 easting station1, easting station2
y 5620906 5616856 northing station1, northing station2
dataColumn 1 2 number of the particular column in the data part
@dataVal beginning of data part
01.01.1979 07:30 0.8 0.1 date, time, value station1, value station2
...
31.12.2000 07:30 1.1 0 date, time, value station1, value station2
#end of rain.dat end of data part

Parameter

J2000 expects the following parameter files for the model initialization:

  • landuse.par – land use
  • hgeo.par - hydrogeology
  • soils.par – soil types
  • reach.par – net of water course
  • hrus.par – parameter of the derived Hydrological Response Units (HRUs)

Generally, all parameter files have the following structure (demonstrated here for the example of the net of water course; see also the figure on the right):

thumb|right|Sample of a parameter file

line description
1 #reach.par
2 name of variable
3 smallest possible value
4 biggest possible value
5 unit
6 beginning of data part
n #end of reach.par -> marks the end of the parameter file (here: land use)


  • landuse.par
parameter description
LID land use ID
albedo albedo in %
RSC0_1 minimum surface resistance for water-saturated soil in January
...
RSC0_12 minimum surface resistance for water-saturated soil in December
LAI_d1 leaf area index (LAI) at the beginning of the vegetation period
...
LAI_d4 leaf area index (LAI) at the end of the vegetation period
effHeight_d1 effective vegetation height at the beginning of the vegetation period
...
effHeight_d4 effective vegetation height at the endof the vegetation period
rootDepth rooth depth
sealedGrade sealed grade


  • hgeo.par
parameter description
GID hydrogeology ID
RG1_max maximum storage capacity of the upper ground-water reservoir maximale
RG2_max maximum storage capacity of the lower ground-water reservoir
RG1_k storage coefficient of the upper ground-water reservoir
RG2_k storage coefficient of the lower ground-water reservoir


  • reach.par
parameter description
ID channel part ID
length lenght
to-reach ID of the underlying channel part
slope slope
rough roughness value according to MANNING
width width


  • soils.par
parameter description
SID soil type ID
depth thickness of soil
kf_min minimum permeability coefficient
depth_min depth of the horizon above the horizon with the smallest permeability coefficient
kf_max maximum permeability coefficient
cap_rise boolean variable, that allows (1) or restricts (0) capillary ascension
aircap air capacity
fc_sum useable field capacity
fc_1 ...22 useable field capacity per decimeter of profile depth


  • hrus.par

Parameters of the given Hydrological Response Units (HRUs)

parameter description
ID HRU ID
x easting of the centroid point
y northing of the centroid point Hochwert des Flächenschwerpunktes
elevation mean elevation
area area
type drainage type: HRU drains in HRU (2), HRU drains in channel part (3)
to_poly ID of the underlying HRU
to_reach ID of the adjacent channel part
slope slope
aspect aspect
flowlength flow length
soilID ID soil class
landuseID ID land use class
hgeoID ID hydrogeologic class



Regionalization of Climate and Precipitation Data

General Processing

1. Calculation of the linear regression between the daily station values and the elevation of the stations. . Thereby, the coefficient of determination (r2) and the slope of the regression line (bH) of this relation is calculated. It is assumed that the value (MW) depends linearly on the terrain elevation (H); according to:


 MW = a_H + b_H \cdot H


The unknown aH aH and bH bH are defined according to the Gaussian method of the smallest squares:


 b_H = \frac{\sum_{i=1}^{n} (H_i - \overline{H})(MW_i - \overline{MW})}{\sum_{i=1}^{n} (H_i - \overline{H})^2}


 a_H = \overline{MW} - b_H \cdot \overline{H}


The correlation coefficient of the regression is calculated according to the following equation:


 r = \frac{\sum_{i=1}^{n} (H_i - \overline{H})(MW_i - \overline{MW})}{\sqrt{\sum_{i=1}^{n} (H_i - \overline{H})^2 \cdot \sum_{i=1}^n (MW_i - \overline{MW})^2}}


2. Definition of the n gaging stations which are nearest to the particular HRU.. The number n which needs to be entered during the parameterization is dependent on the density of the station network as well as on the position of the individual stations.

For each dataset the number of stations (n) that shall be considered for the regionalization needs to be determined in advance. Furthermore, a weighting factor (pIDW) needs to be given. The n-nearest stations are defined according to the following calculation rule with the help of the eastings and northings of all stations as well as the coordinates of the particular HRU. The first step is to calculate the distance (Dist(i)) of each station to the area of interest:


 Dist(i) = \sqrt{(RW_{stat(i)} - RW_{DF})^2 + (HW_{stat(i)} - HW_{DF})^2}


with

RW ... easting of the station i...n, or the HRU (DF)

HW ... northing of the station i...n, or the HRU (DF)


The n stations with the smallest distance to the particular HRU are taken from the distances calculated according to the description above and are then used for further calculations. The distances of these stations are converted to weighted distances (wDist(i)) via potentialization with the weighting factor pIDW. With the help of this weighting factor the influence of nearby stations can be increased and the influence of more distanced stations can be decreased. Good results can be achieved with values of 2 or 3 for the pIDW.


3. Via an Inverse-Distance-Weighted Verfahren (IDW) the weightings of the n stations are defined dependently on their distances for each HRU. Via the IDW-method the horizontal variability of the station data is taken into account according to its spatial position. The calculation is carried out according to the following equation:


 W(i) = \frac{\left( \frac{\sum\nolimits^n_{i=1} wDist(i)}{wDist(i)} \right)}{\sum^n_{i=1}\left( \frac{\sum\nolimits^n_{i=1} wDist(i)}{wDist(i)} \right)}


4. The calculation of the data value for each HRU with the weightings from point 3 and an optional elevation correction for the consideration of the vertical variability. The elevation correction is only carried out when the coefficient of determination (calculated under point 1) goes beyond the threshold entered by the user. The calculation without the optional elevation correction is carried out according to the following equation:


 DW_{DF} = \sum^n_{i=1} MW(i) \cdot W(i)


For data values that possess an elevation effect, an elevation correction for the measured values is carried out additionally when the values have a tight regression relation (r² greater than the threshold entered by the user). The following equation is applied for the calculation:


 DW_{DF} = \sum^n_{i=1} \left( ( \Delta H(i) \cdot b_H + MW(i)) \cdot W(i) \right)


with ΔH(i) ... elevation difference between station i and the HRU

bH ... slope of the regression line

Specific Correction Method and Calculation Method for the Individual Datasets

Precipitation

Correction of the Moistening Error and Evaporation Error

The correction of the moistening error and evaporation error is carried out according to researches with the help of Hellmann-rainfall gauges by RICHTER (1995). In order to offer a constant correction of the error (which results from the moistening and evaporation loss), logarithmic functions were approximated separately for the summer half year (May-October) and winter half year (November-April) to the discrete tabulated values in the modeling system 2000. If the precipitation height goes beyond the value of 9 mm the moistening error and evaporation error is set to a constant value. The moistening error and evaporation error for precipitation heights ≤9.0 mm is calculated according to the following equates:

 
BV_{Som}=  0.08 \cdot \ln{N} + 0.225 \; \; \; \mathrm{[mm]}


BV_{Win}=  0.05 \cdot \ln{N} + 0.13 \; \; \; \mathrm{[mm]}


For precipitation heights >9.0 mm the moistening and evaporation error is:

 
BV_{Som} = 0.47 \; \; \; \mathrm{[mm]}


BV_{Win} = 0.30 \; \; \; \mathrm{[mm]}


Correction of the Wind Error

The quantification of the precipitation error that is to be expected is carried out according to the researches by RICHTER (1995) as function of the precipitation height and the position of the station. It is assumed that the relative wind error (KRWind) for rainfall as well as snowfall verhält sich inversely proportional to the precipitation heights (Pm). The calculation is carried out according to the following equations:


KR_{Wind}=
\begin{cases}
0.1349 \cdot P_m^{-0.494} & \mathrm{f\ddot{u}r} \; \; T_{mean} > T_{crit} \\
0.5319 \cdot P_m^{-0.197} & \mathrm{f\ddot{u}r} \; \; T_{mean} \le T_{crit} 
\end{cases}
\; \; \mathrm{[-]}


The calculation of the precipitation heights corrected for evaporation error and wind error is then carried out according to the following equation:



P_{korr} = P_m + P_m \cdot KR_{Wind} + BV_{Som}, BV_{Win} \, \, \, \mathrm{[mmd^{-1}]}


Temperature

The modeling system J2000 requires values of the day minimum temperature as well as the day maximum temperature. From these values the mean day temperature (Tmean) is calculated as mean average.

The regionalization of the punctual values Tmin,Tmax and Tmean is carried out according to the rule described above with optional elevation correction.



Wind Speed

The wind speed is not given as direct value from the DWD but as wind force observations (WS) in Beaufort. The conversion of the wind force into the wind speed at 2 m height (v2) [in ms-1] can be carried out according to the following equation:



v_2 = 0.6 \cdot WS^{1.5} + 0.1 \; \; \; \mathrm{[ms^{-1}]}


This conversion needs to be carried out externally, because J2000 expects the wind speed in m/s.

The conversion of the wind speed at 2 m height to other heights – as it is partly required during the evaporation calculation and the wind correction of the precipitation – is carried out during the modeling according to the following equation:



v_z = \frac{v_z}{\left( \frac{4.2}{\ln z + 3.5}\right)} \; \; \; \mathrm{[ms^{-1}]}


The interpolation of the punctual values to the area is carried out according to the method described above. The modeling system allows the inclusion of the optional elevation correction for the regionalization of the wind speed. However, this option should be handled with care, since the wind speed is very dependent on the station’s position.


Sunshine Duration

The daily sunshine duration (S) [in h], is provided as value by the DWD. The interpolation of the station values to the area is carried out according to the procedure described above – without additional calculations or elevation corrections.


Relative Humidity

The relative humidity (U) [in %] can be taken from the DWD as daily values. A direct regionalization of the values is not recommended since they depend on two parameters: the absolute moisture content and the maximum possible moisture content of the air for a particular temperature. Thus, in the J2000 modeling system’s regionalization module the absolute humidity (a) [in g cm-3] is calculated from the relative humidity and the temperature at the station. It is then regionalized and afterwards the absolute humidity is converted to the relative humidity, again. For this purpose, several calculation steps are necessary which are shown below.


Calculation of the Saturation Vapor Pressure

The saturation vapor pressure (es(T)) [in hPa] is calculated according to the Magnus formula with the coefficients by SONNTAG (1994) for the air temperature (T) [in °C]:

 
e_s(T) = 6.11 \cdot e^{\left( \frac{17.62 \cdot T}{243.12 + T} \right)}
\; \; \; \mathrm{[hPa]}


Calculation of the Maximum Humidity

The maximum humidity (A) is calculated against the saturation vapor pressure (es(T)) and the air temperature (T) according to:


 
A(T) = e_s(T) \cdot \frac{216.7}{T + 273.15}
\; \; \; \mathrm{[g cm^{-3}]}


Calculation of the Absolute Humidity

The real water content of the air, the absolute humidity (a) [in gcm-3], results from the maximum humidity (A)[in gcm-3] and the relative humidity (U) [in %]:



a = A \cdot \frac{U}{100} 
\; \; \; \mathrm{[g cm^{-3}]}


The so calculated station values of the absolute humidity are then regionalized according to the procedure described above and are converted into relative humidity afterwards. The advantage of this rather complex regionalization method is that, in addition to its higher physical relation, the absolute humidity is more dependent on heights than the relative humidity. Thus, the elevation effect can be used for the regionalization according to the procedure described above. After the regionalization of the absolute humidity, the conversion into relative humidity can be carried out. Instead of the station temperature, the mean air temperature Tmean Anstelle der Temperatur der Station wird aber die zuvor regionalisierte mittlere Lufttemperatur der entsprechenden diskreten Teilfläche gesetzt.



Calculation of Evapotranspiration

The calculation of the Bestandverdunstung is carried out in J2000 according to the Penman-Monteith equation in several steps in regard to numerous parameters. Since the calculation is very complex and time-consuming, it was sourced out into the preprocessing part of the modeling system. This outsourcing is possible because most of the parameters that are used for the calculation are derived from the input data and are thus seen as independent of the modeled dynamic of the water supply. The only parameter that is used in the calculation but can only be defined during the modeling is the current soil moisture. Its reducing influence is taken into account via appropriate reduction functions during the modeling. Two evaporation values are generated for each time interval (1 day) during the calculation of the evaporation. These values are a day value (index d) and a night value (index n). This distinction is necessary because the net radiation balance is very different at day or night. Furthermore, the evapotranspiration behavior of the vegetation is different at day or night. In the night the plants’ stomata are closed, the surface resistance is ungleich höher than at daytime. The calculation for the day and for the night is carried out according to the following equations, whereby the total value of the evaporation for the particular time step results as sum of these two values.


 ETP_d = \frac{1}{L_d} \cdot{ \frac{s_d \cdot {(R_{N_d} - G_d)}+ \rho \cdot{c_P} \cdot\frac{e_{s_d} - e_d}{r_a}}{s_d + \gamma _d \cdot{\left(1+ \frac{r_{s_d}}{r_a} \right)}}} \cdot{\left(\frac{S_0}{24} \right)}


ETP_n = \frac{1}{L_n} \cdot{ \frac{s_n \cdot {(R_{N_n} - G_n)}+ \rho \cdot{c_P} \cdot\frac{e_{s_n} - e_n}{r_a}}{s_n + \gamma _n \cdot{\left(1+ \frac{r_{s_n}}{r_a} \right)}}} \cdot{\left(1- \frac{S_0}{24} \right)}


with:

Ld,n ... latent heath of evaporation [Wm-2] per [mmd-1]

sd,n ... slope of the vapor pressure curve [hPaK-1]

RN d,n ... net radiaton [Wm-2]

Gd,n ... soil heat flux [Wm-2]

ρ ... density of the air [kgm-3]

cp ... specific heat capacity of the air for constant pressure [Jkg-1K-1]

esd,n ... saturation vapor pressure [hPa]

ed,n ... vapor pressure [hPa]

ra ... aerodynamic resistance of the land cover [sm-1]

γ d,n ... psychrometer constant [hPaK-1]

rsd,n ... surface resistance of the land cover [sm-1]

S0 ... astronomic possible sunshine duration [h]


The air temperatures (Td und Tn), which become necessary for the calculation of the net radiation balance, are derived from the values of the minimum temperature and maximum temperature as well as from the daily mean value:


 T_d = \frac{T_{max} + T_{mean}}{2} \, \, \, \mathrm{[C]}


 T_n = \frac{T_{min} + T_{mean}}{2} \, \, \, \mathrm{[C]}


Thelatent heath of evaporation (L) is calculated approximately according to:

L_d = 28.9 - 0.028 \cdot{T_d}

 \left[\frac{W}{m^2} \, \mbox{pro} \, \frac{\mathrm{mm}}{\mathrm{d}}\right]

L_n = 28.9 - 0.028 \cdot{T_n}


The saturation vapor pressure (es(T)) of the air for the temperature (T) is calculated according to the Magnus formula with the coefficients by Sonntag:


e_s (T)_d = 6.11 \cdot e^{\frac{17.62 \cdot{T_d}}{243.12 + T_d}} \, \, \, \mathrm{[hPa]}


e_s (T)_n = 6.11 \cdot e^{\frac{17.62 \cdot{T_n}}{243.12 + T_n}} \, \, \, \mathrm{[hPa]}


The real vapor pressure (e) results from the saturation vapor pressure and the relative air humidity (U in [%]):


e_d=e_s(T)_d \cdot \frac{U}{100} \, \, \, \mathrm{[hPa]}


e_d=e_s(T)_d \cdot \frac{U}{100} \, \, \, \mathrm{[hPa]}


The slope of the saturation vapor pressure curve (s) calculated from the saturation vapor pressure (es(T)) and the air temperature (T):


 s_d= e_s(T)_d \cdot \left( \frac{4284}{(243.12+T_d)^2} \right)

 \left [ \frac{\mathrm{hPa}}{\mathrm{K}} \right]

 s_n= e_s(T)_n \cdot \left( \frac{4284}{(243.12+T_n)^2} \right)


Theair pressure (p) at the height (z) is generated from the adapted barometric formula:


p_{z_d}=p_0 \cdot e^{- \left( \frac {g}{R \cdot Tabs_d} \cdot z \right)} \, \, \, \mathrm{[hPa]}


p_{z_n}=p_0 \cdot e^{- \left( \frac {g}{R \cdot Tabs_n} \cdot z \right)} \, \, \, \mathrm{[hPa]}


with:

p0 ... air pressure at sea level (= 1013) [hPa]

g ... gravitational acceleration (= 9.811) [ms-1]

R ... universal gas constant (= 8314.3) [Jkmol-1K-1]

Tabs ... absolute air temperature [K]


Thepsychrometer constant (γ) results from:


 \gamma_d = \frac{c_P \cdot p_d}{0.622 \cdot L_d \cdot 86400}

 \left[ \frac{\mathrm{hPa}}{\mathrm{K}} \right]

 \gamma_n = \frac{c_P \cdot p_n}{0.622 \cdot L_n \cdot 86400}


whereby 0.6322 is the relation of the molar weight of water vapor and dry air.


Calculation of the Net Radiation Balance

The energy that is necessary for the evaporation is provided by radiation. The net radiation balance for each day needs to be defined for the calculation of the amount of energy that results from the energy balance segments. The energy fluxes that add to the net radiation balance are: the extraterrestrial radiation, the global radiation, the atmospheric backradiation, the longwave radiation as well as the soil heat flux. The extraterrestrial radiation (R0) is calculated against the latitude as well as the annual variation of the insolation angle of the sun (declination):


R_0= \frac {1}{8.64} \cdot \left[245 \cdot (9.9 + 7.08 \cdot \sin{\zeta})+0.18 \cdot (\phi - 51) \cdot (\sin{\zeta} - 1) \right] \, \, \, \left[\frac{\mathrm{W}}{\mathrm{m^2}} \right]


with the angle ζ and the factor (1/8.64) for the conversion of Jcm-2 to Wm-2, as well as from latitude φ to degree.

The global radiation (RG) is calculated on the basis of the extraterrestrial radiation R0 and the cloudiness. The degree of cloudiness is here approximated from the relation of the measured sunshine duration to the astronomic possible sunshine duration for unclouded sky (S0) with the help of an empirical relation according to the Ångström formula. RG is calculated according to:


 R_G = R_0 \cdot \left( a + b \cdot \frac{S}{S_0} \right) \, \, \, \left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]


The calculation of the astronomic possible sunshine duration (S0) in the annual variation is carried out against the latitude:


 S_0 = 12.3 + \sin{ \zeta} \cdot \left( 4.3 + \frac{\phi -51}{6} \right) \, \, \, \mathrm{[h]}

with

ζ = 0.0172*JT - 1.39

JT ... Julian day [1...365;366]

φ ... latitude


The longwave radiation of the earth’s surface and the atmospheric backradiation are calculated together as effective longwave radiation (RL). The black body radiation according to Boltzmann, the degree of cloudiness and an empiric function of the air‘s content of water vapor are part of the calculation:


 R_{L_d} = \sigma \cdot T_{abs_d}^4 \cdot \left( 0.1 + 0.9 \cdot \frac{S}{S_0} \right) \cdot \left( 0.34 - 0.044 \cdot \sqrt{e_d} \right)

\left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]

 R_{L_n} = \sigma \cdot T_{abs_n}^4 \cdot \left( 0.1 + 0.9 \cdot \frac{S}{S_0} \right) \cdot \left( 0.34 - 0.044 \cdot \sqrt{e_n} \right)


with

σ ... Stefan-Boltzmann-constant (=5.67*10-8) [Wm-2K-4]

Tabsd,n ... absolute air temperature [K]

ed,n ... vapor pressure of the air [hPa]


The net radiation results from global radiation (RG) reduced by the albedo (α) of the particular land use type as well as from the effective longwave radiation (RL):


 R_{N_d} = (1- \alpha) \cdot R_G - R_{L_d}

 \left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]

 R_{N_n} = 0 - R_{L_n}


The soil heat flux (G) is then calculated according to the very much simplified relation:


 G_d = 0.2 \cdot R_{N_d}

 \left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]

 G_d = 0.2 \cdot R_{N_n}



Calculation of Live Stock Specific Parameters

The influence of different vegetation forms on the evaporation is taken into account via two resistances in the Penman-Monteith-approach: the surface resistance (rs) and the aerodynamic resistance (ra). For the calculation of the resistances, land use-specific parameters are needed. These are: the leaf area index LAI, the effective vegetation height (eff.Bh.), and the surface resistances for water saturation. Their values are shown for different land cover classes in the following table:


thumbnail|center|Land use parameters of different land cover classes


Furthermore, the live stock specific albedo values are contained which are used for the calculation of the net radiation balance. The leaf area index and the effective vegetation height are represented as distinctive points (d1...d4) of the year. The points represent the beginning of the vegetation period (d1), the reaching of the maximum development or ripeness (d2), the ripeness period until the point d3 and then the decrease until the end of the vegetation period (d4). The individual points are represented by the Julian days (d1 = 110, d2 = 150, d3 = 250, d4 = 280) for areas at about 400m height. For other heights (z) these points are approximated according to the following empirical relation:


 d_1(z)=d_1(400)+0.025 \cdot (z-400)

 d_2(z)=d_2(400)+0.025 \cdot (z-400)

 d_3(z)=d_3(400)+0.025 \cdot (z-400)

 d_4(z)=d_4(400)+0.025 \cdot (z-400)


The values between the individual points are interpolated linearly. The aerodynamic resistance (ra) of the particular land use type can be calculated according to the following equation:


 ra = \frac{4.72 \cdot \left( \ln{ \left( \frac{z_m}{z_0} \right)} \right)^2}{1 + 0.54 \cdot v_2} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


with

zm ... measuring height of the wind speed (=2 m) [m]

z0 ... aerodynamic roughness length (≈ 0.125*effective vegetation height) [m]

v2 ... wind speed at 2 m height [ms-1]


The aerodynamic resistance for effective vegetation heights of equal or more than 10 m can be calculated according to the following simplified equation:


 ra = \frac{64}{1 + 0.54 \cdot v_2} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


The surface resistance of the particular use type is calculated according to the following equation:


 rs_d = \left( \frac{1-A}{rsc} + \frac{A}{rss} \right)^{-1} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


 rs_n = \left( \frac{LAI}{2500} + \frac{1}{rss} \right)^{-1} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


with

rsc ... surface resistance [sm-1]

A ... 0.7LAI [-]

rss ... surface resistance of uncovered soil [sm-1]


Specific Adaptation of Evaporation during the Modeling


Furthermore, slope and aspect significantly influence the evaporation amount and are therefore taken into account by the following correction factors:


 Korr_{ETP} = (0.01605 \cdot \sin{( \delta -90)} - 0.00025 ) \cdot \alpha + 1

with

δ ... aspect from north in degree

α ... slope in degree


The evaporation of slopes (ETP') is calculated with the help of this correction factor:


 ETP' = ETP \cdot Korr_{ETP} \, \, \, \mathrm{[mmd^{-1}]}


For the consideration of the current soil humidity the particular correction functions are applied. It is assumed that the vegetation can only transpire until a particular water content of the soil with the potential evaporation rate is reached. After going below this water content, the real evaporation decreases proportionally to the potential evaporation until it becomes zero at the point of the permanent wilting point. In J2000 there is a linear function with the Eichkoeffizienten linear_reduc and a non linear procedure with the Eichkoeffizienten poly_reduc available for the reduction:



f(\Theta)=
\begin{cases}
\left( \frac{\Theta MPS}{linear_-reduc} \right) & \mathrm{f\ddot{u}r} \, \, \,  linear_-reduc < \Theta MPS \\
\, \, \, 1 & \mathrm{sonst}
\end{cases}
\, \, \, [-]


 f(\Theta) = 10^{\left(-10 \cdot (1-sat)^{poly_-reduc} \right)} \, \, \, [-]


With the linear function it is assumed that the current ETP conforms to the potential ETP as long as the relative MPS saturation equals or is greater than the linear_reduc. If the relative MPS saturation falls below the linear_reduc, the reduction factor f(Θ) decreases linearly. Thus, linear_reduc represents a threshold that needs to be defined by the user and that can take values from 0 to 1. In contrast, the Eichkoeffizient poly_reduc can take all values between zero and infinite. For a small value of poly_reduc the reduction factor is also reduced for a high MPS saturation. If the values of poly_reduc increase, the potential ETP slightly decreases. For decreasing MPS saturation, a higher reduction occurs. The real evaporation is calculated with the value from the correction function against the current water content of the soil from the potential evaporation (ETP'):



 ETR = f(\Theta) \cdot ETP' \, \, \, \mathrm{[mm d^{-1}]}



Interception Module

The interception module serves the calculation of the net precipitations from the field precipitations against the particular vegetation covers and their development in the annual variation. The field precipitation is reduced by the interception part to the net precipitation via interception. Thus, net precipitation only occurs when the maximum interception storage capacity of the vegetation is exhausted. The surplus is then passed on as through falling precipitation to the following module. The maximum interception capacity (Int max) is calculated in J2000 according to the following formula:


Int_{max} = \alpha \cdot{LAI} \, \, \, \mathrm{[mm]}

with

α ... storage capacity per m2 leaf area against the precipitation type [mm]

LAI ... leaf area index of the particular land use class [-]

The parameter α has a different development, depending on the type of the intercepted precipitation (rain or snow), since the maximum interception capacity of snow is noticeably higher than of liquid precipitation. The leaf area index for the individual vegetation types of the year is calculated with the described method for each day of the time series. The emptying of the interception storage is carried out exclusively by evaporation. A special case occurs when the development of the parameter α changes from rain to snow due to the air temperature. This leads to a heavy decrease of the maximum interception storage capacity. Possible surplus is passed on as abtropfender precipitation to the following module.



Schneemodul

Die Schneeentwicklung ist im Schneemodul des J2000 in 3 Phasen untergliedert: die Schneeakumulation, die Metamorphose und die Schneeschmelze. Zur Berechnung der täglichen Akkumulationsrate (Acc) wird zunächst anhand der Lufttemperatur bestimmt, wie hoch der Schneeanteil am Gesamtniederschlag ist. Zur Bestimmung des Anteils wird angenommen, daß bei Unterschreiten einer bestimmten Grenztemperatur der gesamte Niederschlag als Schnee fällt und bei Überschreiten einer zweiten Grenztemperatur der gesamte Niederschlag als Regen fällt. Im Bereich zwischen diesen Grenztemperaturen treten Mischniederschläge auf. Zur Bestimmung der Grenztemperaturen und damit der Breite des Übergangsbereiches muß ein Temperaturwert (Trs in °C) angegeben werden, der der Temperatur entspricht, bei der 50% des Niederschlages als Schnee und 50% als Regen fallen. Zusätzlich muß ein Parameter Trans (in K) bestimmt werden, der der halben Breite des Übergangsbereiches entspricht. Der tatsächliche Schneeanteil (p(s)) am Tagesniederschlag in Abhängigkeit von der Lufttemperatur (T) berechnet sich dabei nach:


 p(s) = \frac{TRS + Trans - T}{2 \cdot Trans} \, \, \, \mathrm{[mm]}


Die tägliche Schneemenge (Ns) bzw. Regenmenge (Nr) ergibt sich nach:


 N_s = N \cdot p(s) \, \, \, \mathrm{[mm]}


 N_r = N \cdot (1-p(s)) \, \, \, \mathrm{[mm]}


Das so berechnete tägliche Schneewasseräquivalent wird dem Festspeicher (SWCdry) zugeschlagen. Ist p(s) kleiner 1.0, wird der resultierende Regenanteil zum Flüssigspeicher addiert.

Die resultierende Schneehöhenänderung berechnet sich unter Zuhilfenahme der Dichte von Neuschnee (ρnew) aus:


 \Delta SH = \frac{N_s}{\rho_{new}} \, \, \, \mathrm{[mm]}


Mit dem Kälteinhalt der Schneedecke werden die thermischen Verhältnisse unter der Schneedecke im Zusammenhang mit der Schneeschmelze berücksichtigt. Da durch negative isothermische Verhältnisse unter der Schneedecke geschmolzenes Wasser gleich wieder gefriert und somit der weitere Abfluss verhindert wird, muss der Kälteinhalt erst den Wert Null erreichen, damit die Schneeschmelze einsetzen kann. Demnach erhöhen negative Temperaturen den Kälteinhalt und positive Temperaturen verringern ihn. Die Berechnung des Kälteinhaltes (CC) ergibt sich aus dem Produkt der Lufttemperatur mit einem Kalibrierungsparameter (coldContFac):


 CC = coldContFac \cdot T \, \, \, \mathrm{[mm]}


Die Schneedecke ist in der Lage, bis zu einer gewissen Grenzdichte (critDens) freies Wasser (liquidWater) in ihren Poren zu speichern. Diese Speicherfähigkeit geht bei Erreichen eines bestimmten Anteils von freiem Wasser im Verhältnis zum Gesamtschneewasseräquivalent (zwischen 40% und 45)% nahezu vollkommen und irreversibel verloren. Dies wird bei der Modellierung durch die Berechnung eines maximalen Wassergehaltes (WSmax) der Schneedecke berücksichtigt:


 WS_{max} = critDens \cdot snowDepth \, \, \, \mathrm{[mm]}


Die kritische Grenzdichte (critDens) ist dabei vom Anwender anzugeben. Das in der Schneedecke gespeicherte Wasser, das diesen Grenzwert überschreitet, kommt zum Abfluß:


 SMR = \left( 1- e^{(1-(\frac{critDens}{totDens}))^4} \right) \, \, \, \mathrm{[mm]}


Das resultierende Schmelzwasser (SMR) geht als Eingabewert in das sich anschließende Bodenmodul ein. Die Dichte der Schneedecke verharrt dabei auf der kritischen Grenzdichte, bis sie entweder vollkommen abgetaut ist oder durch erneutes Auftreten von Schneefall wieder in die Akkumulationsphase übergeht.


Für die Berechnung der potentiellen Schmelzrate stehen in J2000 zwei Verfahren zur Verfügung: Ein einfaches Verfahren nutzt den engen Zusammenhang zwischen der Lufttemperatur und der Schneeschmelzintensität. Die potentielle Schneeschmelzrate (potMR) berechnet sich aus der Lufttemperatur, dem Grad-Tag-Faktor (ddf = day degree factor) und der totalen Schneedichte (totSnowDens):


 potMR = ddf \cdot totSnowDens \cdot T \, \, \, \mathrm{[mm]}


Dabei stellt der Grad-Tag-Faktor einen empirisch ermittelten Abtaukoeffizienten dar. Alternativ zur genannten Berechnungsformel kann die potentielle Schneeschmelzrate auch durch einen komplexeren Ansatz berechnet werden. In dieser Berechnung werden neben der Niederschlagsmenge (P in mm) und der Lufttemperatur zusätzliche Energieflüsse (Luft-, Niederschlags- und Bodentemperatur) berücksichtigt. Da die benötigten Eingabedaten für diesen Ansatz (z.B. Niederschlagsintensität, Schmelzwärme von Schnee, Windgeschwindigkeit) oft nicht zur Verfügung stehen, müssen diese geeicht werden. Die daraus resultierende, vereinfachte Gleichung beinhaltet nun neben den Temperatur- und Niederschlagsdaten nur noch die empirisch zu ermittelten Kalibrierungsfaktoren r_factor, g_factor und t_factor.


 potMR = t_-factor \cdot T + r_-factor \cdot P + g_-factor \, \, \, \mathrm{[mm]}



Bodenwassermodul

Das Bodenmodul gliedert sich in Prozess- (Infiltration, Evapotranspiration) und Speichereinheiten (Mittelporenspeicher (Middle Pore Storage = MPS), Grobporenspeicher (Large Pore Storage = LPS), Muldenrückhalt). Zunächst wird mit Hilfe einer empirischen Methode die Infiltrationskapazität in Abhängigkeit der Wassersättigung im Boden und einer maximalen Infiltrationsrate abgeschätzt. Die maximale Infiltrationsrate fungiert als Grenzwert, bei dessen Überschreitung das überschüssige Wasser im Muldenrückhalt zwischengespeichert oder dem direkten Oberflächenabfluss zugeführt wird. Als maximaler Muldenrückhalt (maxDepStor) wird die Wassermenge verstanden, die in Oberflächendepressionen maximal zurückgehalten werden kann. Der Muldenrückhalt ist weiterhin von der Oberflächenstruktur sowie vom Gefälle abhängig und halbiert sich bei einer Geländeneigung, die größer als 5% ist. Das Niederschlagswasser, welches nicht infiltriert oder im Muldenrückhalt zwischengespeichert wird, fließt als Oberflächenabfluss ab. Zur Berechnung der Infiltration (Inf) dient im J2000 eine empirische Berechnungsmethode. Dazu wird eine vom Anwender definierte maximale Infiltrationsrate (maxINF in mm/d) in Abhängigkeit des relativen Sättigungsdefizits des Bodens (1 - soilsat) betrachtet:


 Inf = (1-soil_{sat}) \cdot maxINF \, \, \, \mathrm{[mm/d]}


Dabei erfolgt die Berechnung der relativen Sättigung des Bodens nach:


 soil_{sat} = \frac{(MPS_{act} + LPS_{act})}{(MPS_{max} + LPS_{max})} \, \, \, [-]


mit

MPSact, MPSmax ... aktuelle, maximale Füllung des Mittelporenspeichers

LPSact, LPSmax ... aktuelle, maximale Füllung des Grobporenspeichers


Für die Bestimmung der maximalen Infiltrationsrate werden drei Infiltrationsszenarien berücksichtigt. Die Einstellung der vom Anwender bestimmten maximalen Infiltrationsrate (maxINF) mit dem Parameter Inf_winter stellt den Normalfall der Infiltration für das Winterhalbjahr dar. Zusätzlich dazu werden die besonderen Infiltrationsbedingungen für die im Sommerhalbjahr auftretenden konvektiven Niederschläge mit kurzer Dauer und hoher Intensität durch den Parameter Inf_summer berücksichtigt. Zusätzlich wird mit der Einstellung des Parameters Inf_snow versucht, dem Zustand verminderter Infiltration durch teilweisen oder vollständig gefrorenen Boden bei Schneebedeckung gerecht zu werden. Ist dabei die zu infiltrierende Wassermenge größer als die vom Anwender festgelegte maximale Infiltrationsrate (maxINF), wird das überschüssige Wasser im Muldenrückhalt zwischengespeichert oder fließt oberflächig ab. Die Infiltration wird weiterhin durch den Versiegelungsgrad der Oberfläche beeinflusst. Bei einem Versiegelungsgrad mit mehr als 80% (impervious areas IP>80) versickert nur noch 25% des Niederschlages, bei einem Versiegelungsgrad mit weniger als 80% (impervious areas IP<80) versickert 60% des Niederschlags. Der infiltrierte Niederschlag wird nun zwischen dem Mittelporenspeicher und dem Grobporenspeicher aufgeteilt, wobei hier das Sättigungsdefizit des MPS ausschlaggebend ist. Der Zufluss in den MPS (MPSin) ergibt sich in Abhängigkeit seines relativen Speicherinhaltes (ΘMPS) aus dem infiltrierten Niederschlag (Inf) sowie einen vom Anwender definierten Kalibrierungskoeffizienten (Dist coef) und wird nach folgender Gleichung berechnet:


 MPS_{in} = Inf \cdot \left( 1-e^{(\frac{-1 \cdot Dist coef}{\Theta MPS})} \right) \, \, \, \mathrm{[mm]}


Der infiltrierte Anteil des Niederschlagswassers, welcher nicht in vom MPS aufgenommen wird, gelangt in den Grobporenspeicher (LPSin):


 LPS_{in} = Inf - MPS_{in} \, \, \, \mathrm{[mm]}


Der Wertebereich des Kalibrierungskoeffizienten liegt zwischen Null, so dass kein Wasser in den MPS gelangt, und Unendlich. Der Austrag aus dem MPS erfolgt ausschließlich über die Evapotranspiration (ETP), welche aus der aktuellen Speicherfüllung des MPS und der potentiellen ETP berechnet wird (siehe Evapotranspirationsberechnung).

Die vertikale (Perkolation) und laterale (Zwischenabfluss) Wasserbewegung im Boden findet ausschließlich in den LPS statt und ist somit vom Anteil der Grobporen abhängig. Zunächst ist der gesamte Ausfluss aus den LPS (LPSout) zu berechnen, der sich schließlich auf die beiden genannten Abflusskomponenten aufteilt. Dieser wird in Abhängigkeit der relativen Sättigung des Bodens (soilsat), des aktuellen Grobspeicherinhaltes (LPSact) und einem Kalibrierungskoeffizienten (LPSout) berechnet.


 LPS_{out} = (soil_{sat})^{LPSout} \cdot LPS_{act} \, \, \, \mathrm{[mm]}


Die anschließende Verteilung des LPS-Ausflusses in die vertikale und laterale (inter) Fließrichtung erfolgt in Abhängigkeit der Hangneigung und eines anwenderspezifischen Kalibrierungsfaktors (LatVertDist), Werte zwischen 0 und plus unendlich annehmen kann.


 perc = LPS_{out} \cdot (1- \tan{(Hangneigung)} \cdot LatVertDist) \, \, \, \mathrm{[mm]}

 inter = LPS_{out} \cdot (\tan{(Hangneigung)} \cdot LatVertDist) \, \, \, \mathrm{[mm]}


Die Perkolationsrate kann durch eine vom Anwender bestimmte maximale, absolute, tägliche Perkolationsrate (maxPerc) begrenzt werden. Bei Überschreitung der maximalen Perkolationsrate wird das überschüssige Wasser dem Zwischenabfluss zugeführt. Die maximale Perkolationsrate ergibt sich aus der hydraulischen Durchlässigkeit und den Anteil an Grob- sowie Makroporen und kann nur vage abgeschätzt werden. Auch das Wasser, welches sich nach einem Zeitschritt im LPS befindet, kann unter Berücksichtigung des aktuellen LPS-Speicherinhaltes (LPSact), der relativen Sättigung des MPS (ΘMPS) und dem Kalibrierungskoeffizienten Diff coef in den MPS diffundieren (LPS2MPS):


 LPS2MPS = LPS_{act} \cdot \left( 1-e^{(\frac{-Diffcoef}{\Theta MPS})} \right) \, \, \, \mathrm{[mm]}


Der Kalabrationsparameter Dist coef hat ebenfalls einen theoretischen Wertebereich von 0 bis plus unendlich, wobei bei einem Wert von 0 keine Diffusion erfolgt und bei überschreiten des Wertes 5 nahezu das gesamte in den Grobporen verbliebene Wasser in den MPS diffundiert.


Während die Perkolation durch die maximale Perkolationsrate begrenzt wird, kann der Austrag über den direkten Abfluss (RD1) und den Zwischenabfluss (RD2) durch vom Anwender definierte Rückhaltekoeffizienten (recRD1, recRD2) abgebremst werden:


 Abfluss = \frac{1}{rec} \cdot Abflusskomponente \, \, \, \mathrm{[mm]}


Erhält recRD1 bzw. recRD2 einen größeren Wert als 1, so stellt dies eine Verringerung des Abflusses dar und das überschüssige Wasser verweilt bis zum nächsten Zeitschritt in den jeweiligen Speichern. Äquivalent dazu verstärkt ein kleiner Wert für k den Abfluss.



Grundwassermodul

Das Modellkonzept des Grundwassermoduls in J2000 ermöglicht, unter Berücksichtigung der unterschiedlichen Speicher- und Abflussverhalten, die Betrachtung des Grundwasserabflusses aller im Einzugsgebiet vorkommenden geologischen Formationen. In den einzelnen geologischen Einheiten wird zwischen dem oberen Grundwasserspeicher (RG1) im lockeren Verwitterungsmaterial mit hoher Durchlässigkeit und dem unteren Grundwasserspeicher (RG2) in Rissen und Klüften des Grundgesteins unterschieden. Es werden dementsprechend zwei Basisabflusskomponenten generiert, eine schnelle aus dem oberen Grundwasserspeicher und eine langsame aus dem unteren Grundwasserspeicher. Die Füllung der Grundwasserspeicher erfolgt aus der vertikalen Ablusskomponente des Bodenmoduls, die Entleerung kann durch die lateralen unterirdischen Abflusskomponenten und kapillaren Aufstieg in die ungesättigte Zone erfolgen. Die Parametrisierung der Grundwasserspeicher erfolgt mit der Bestimmung der maximalen Speicherkapazität des oberen (maxRG1) und des unteren Grundwasserspeichers (maxRG2) sowie jeweils eines Rückhaltekoeffizienten für die beiden Speicher, (recRG1) und (recRG2). Beide Parameter sind für jede geologische Einheit seperat zu bestimmen. Die maximale Speicherkapazität ergibt sich aus dem Produkt des Hohlraumanteils und der Mächtigkeit des einzelnen Speichers pro m² Einheitsfläche. Die Berechnung der Wasserabgabe erfolt in Abhängigkeit der aktuellen Speicherfüllungen in Form einer linearen Auslauffunktion. Die Speicherrückhaltekoeffizienten, welche als Verweilzeiten des Wassers im betrachteten Speicher zu verstehen sind, gehen als Faktor des aktuellen Speicherinhaltes (actRG1 und actRG2) in die Berechnung des Grundwasserausflusses (outRG1 und outRG2) wie folgt ein:


out RG1 = \frac{1}{gwRG1Fact \cdot{recRG1}} \cdot{actRG1} \, \, \, \mathrm{[mm]}


out RG2 = \frac{1}{gwRG2Fact \cdot{recRG2}} \cdot{actRG2} \, \, \, \mathrm{[mm]}


Um der Abflussdynamik der Grundwasserspeicher im Einzugsgebiet gerecht zu werden, können die Grundwasserabflüsse outRG1 und outRG2 mit den Kalibrationsparametern gwRG1Fact bzw. gwRG2Fact für jeweils den oberen und unteren Grundwasserspeicher multipliziert werden. Die gegebenen Parametereinstellungen dieser Faktoren belaufen sich auf einen Wert von eins, wobei der Wert nicht kleiner als Null sein dürfen. Prinzipiell erfolgt der Abfluss aus den Grundwasserspeichern bei einem kleinen Faktor schneller und bei einem großen Faktor verzögert.

Zur weiteren Anpassung an das Einzugsgebiet ist der Eichkoeffizient gwRG1RG2dist einzustellen. Er beeinflusst unter Berücksichtigung der Hangneigung die Verteilung des Perkolationswassers vom Bodenmodul (perc) auf die beiden Grundwasserspeicher für jede Hydrologisch Homogene Einheit. Der Kalibrationsparameter distRG1RG2 geht als Exponent in die Berechung des Grundwasserzuflusses (inRG1 und inRG2) ein:


inRG1 = perc \cdot{(1 - ( 1 - \tan{(Hangneigung)))}} \cdot{gwRG1RG2dist} \, \, \, \mathrm{[mm]}


inRG2 = perc \cdot{(1- \tan{(Hangneigung)})} \cdot{gwRG1RG2dist} \, \, \, \mathrm{[mm]}


Zusätzlich zu den genannten Parametern hat in ebenen Gebieten mit sehr hohen Grundwasserständen, z.B. in ausgedehnten Auen, der kapillare Aufstieg des Grundwassers (GW2MPS) einen deutlichen Einfluss auf die Bodenspeicherfüllung. Um dieser Tatsache gerecht zu werden, wird der noch freie Mittelporenspeicher (deltaMPS), welcher sich aus der Differenz des maximalen Mittelporenspeichers mit dem aktuellen Mittelporenspeichervolumen ergibt, mit einem empirisch ermittelten Faktor multipliziert. In die Berechnung dieses Faktors geht der Kalibrierungskoeffizient gwCapRise und die relative Sättigung des MPS (ThetaMPS) ein:


GW2MPS = \Delta MPS \cdot{ \left(1  - e^{\frac{-gwCapRise}{ \theta MPS}} \right)} \, \, \, \mathrm{[mm]}


Der Kalibrierungskoeffizient gwCapRise kann dabei Werte von Null bis unendlich annehmen, wobei durch Belegung des Koeffizienten mit 0 der kapillare Aufstieg generell untersagt wird.




Lateral Routing

Das laterale Flächenrouting Modul beschreibt die Übergabe des Wassers innerhalb einer Fließkaskade von HRU zu HRU, vom oberen Einzugsgebiet bis zum Vorfluter. Da die Rückhaltemechanismen der Abflussbildung durch die anderen Prozessmodule beschrieben werden, erfolgt hier lediglich die Zuordnung der Zu- und Ausflüsse einer HRU. Dabei wird die Wasserübergabe zwischen den HRU als eine n:1 Beziehung verstanden. Somit kann ein HRU mehrere Zuflüsse aber nur ein Ausfluss haben. Welche HRU nun der nächste Empfänger ist, wird anhand der topologischen ID des HRU-Datensatzes bestimmt. Im HRU-Datensatz ist ebenfalls festgelegt, welche HRUs schließlich in den Vorfluter entwässern.



Reach Routing

Das Reach Routing Modul beschreibt die Fließvorgänge im Gerinne mittels eines kinematischen Wellenansatz und der Berechnung der Fließgeschwindigkeit nach MANNING & STRICKLER. Der einzige einzustellende Parameter (TA) ist ein vom Anwender zu bestimmender Routingkoeffizient. Er repräsentiert die Laufzeit der Abflusswelle, welche sich nach einem Niederschlagsereignis im Gerinne bis zum Gebietsauslass bewegt. Sein Wert geht neben der Fließgeschwindigkeit des Gewässers (v) und der Fließlänge (fl) in die Berechnung eines Abflussrückhaltekoeffizienten (Rk) ein.


 Rk = \frac{v}{fl} \cdot TA \cdot 3600 \, \, \, [-]


Zuvor ist jedoch die Fliessgeschwindigkeit (vnew) mit dem Rauhigkeitsfaktor von Manning (M), dem Gefälle des Flussbettes (I) und dem hydraulischen Radius (Rh) zu bestimmen. Der hydraulische Radius wird wiederum mit dem durchflossenen Querschnitt (A)des Flussabschnittes, berechnet aus Durchfluss (q) und Fliessgeschwindigkeit (v) und der Flussbettbreite(b) berechnet. Bei diesem Ansatz wird zunächst eine Ausgangsgeschwindigkeit (vinit) von 1 m/s angenommen, welche dann iterativ mit der neu berechneten Fließgeschwindigkeit (vnew) abgeglichen wird, bis die Abweichung der beiden Geschwindigkeiten einen Wert kleiner als 0,001 m/s beträgt.


 Rh = \frac{A}{b+2 \frac{A}{b}} \, \, [m] mit:  A = \frac{q}{v_{init}} \, \, \mathrm{[m^2]}


 V_{new} = M \cdot Rh^{\frac{2}{3}} \cdot I^{\frac{1}{3}} \, \, \mathrm{[m^3/s]}


Schließlich wird mit dem ermittelten Ausflussrückhaltekoeffizienten (Rk) der Ausfluss des jeweiligen Flussabschnittes (qact) berechnet.


 Ausfluss = q_{act} \cdot e^{(\frac{-1}{Rk})} \, \, \mathrm{[m^3/s]}


Je höher der angenommene Wert von TA ist, desto schneller bewegt sich die Abflusswelle innerhalb eines bestimmten Zeitabschnittes und umso weniger Wasser verbleibt im Gerinne. Der theoretische Wertebereich entspricht somit dem der positiven Zahlen.

Personal tools