Tutorial Basic Users
ChristianS (Talk | contribs) (→Anwendung des implementierten Grass-HRU Werkzeugkastens) |
|||
Line 318: | Line 318: | ||
===Anwendung des implementierten Grass-HRU Werkzeugkastens=== | ===Anwendung des implementierten Grass-HRU Werkzeugkastens=== | ||
+ | Please see [[GRASS-HRU|GRASS-HRU]]. | ||
==Anwendung des JADE Werkzeugs für die Ergebnisauswertung== | ==Anwendung des JADE Werkzeugs für die Ergebnisauswertung== |
Revision as of 13:43, 16 December 2010
System Requirements, Download and Installation of JAMS/J2000
System Requirements
To run JAMS the Java Runtime Environment (JRE) Version 5.0 or higher is required. The installation file can be downloaded here: http://java.sun.com/javase/downloads/index.jsp.
JAMS/J2000 Download
JAMS is available to download at www.geoinf.uni-jena.de/5580.0.html as a package including the hydrologischen Modell J2000 and a test data set. To run JAMS an installation of Java (J2SE JRE, Version 1.5 or higher) is required.
In addition, all Java sources of JAMS, different standard components as well as all libraries needed are available on this website.
There are packages for the Windows and Linux at disposal. If your operating system does not have a Java installation, JAMS/J2000 can be downloaded with a Java Virtual Machine.
The installation for Windows is carried out by an executable file which installs JAMS completely. For Linux a tgz-archive is available which includes all files needed. For the execution of JAMS on Linux an existing Java installation is required.
The installation of JAMS includes two executable files:
- jams.exe (jams on Linux) launches the JAMS-Launcher
- juice.exe (juice on Linux) launches the grafischen Modelleditor JUICE
JAMS/J2000 Installation on Windows
The installation program opens.
Click on next and accept the license agreement.
In the next step you can decide whether you would like to install two test data sets in addition to JAMS/J2000. In each of those data sets you can find an example of a model description and all necessary input data for the catchment area.
Please select the folder where the programm will be installed.
Please select a folder of the start menu to create shortcuts for JAMS Builder, JAMS Launcher, JAMS Remonte Launcher and test data sets.
Click on install to start the installation.
JAMS/J2000 has been successfully installed.
Introduction and Application of the JAMS Launcher
The JAMS Launcher is a graphical surface for editing Modellkonfigurationen and Systemkonfigurationen and a device for model execution. The design is dependent on the model configuration which is currently loaded. Automatically generated input components can serve to define initialization values for specific model parameters.
The JAMS launcher also enables loading and saving model and system configurations. It is automatically displayed when starting JAMS, providing that the feature "guiconfig" has the value "1" in the system confuguration.
Structure and Capacity of the JAMS Launcher
The JAMS Launcher is a software tool which facilitates loading and parameterizing models as well as carrying out modelings. Additionally, modeling results can be visualized. The total runoff at the catchment outlet, soil water, snow water equivalent and the map of the catchment area can be examined.
You can start the launcher from the start menu or from a shortcut on your desktop. The following window will appear: Bild:JAMS.jpg
The JAMS Launcher has been opened and can now start the modeling.
Under the menu item Datei you can load, save and close models.
The menu item Extras can change settings, load and save settings or continue an interrupted model execution.
Under JAMS settings you can change libraries, output size, output of model protocols and information on model windows. Those settings can be saved for later modelings under Einstellungen speichern and can be loaded under Einstellungen laden.
Im Menüpunkt Modell, kann das Modell gestartet werden (Modell starten), das aktuelle Arbeitsverzeichnis kann eingesehen werden (Workspace anzeigen) oder die Prozessliste der aktuell laufenden Prozesse kann eingesehen werden (Prozessliste öffnen).
Über den Punkt JAMS Data Explorer werden die Modellierungsergebnisse sowie die dem Modell zur Verfügung stehenden Eingangsdaten in das Werkzeug JADE exportiert. Dieses ermöglicht eine intensive Ergebnisauswertung, sowie die Analyse der für die Modellierung verwandten Messdaten.
Die Menüpunkte Lade Modellparameter und Speichere Modellparameter sind zur Verwaltung der Modellparameter nötig. Hier kann eine bearbeiteter Parametersatz gespeichert werden um ihn innerhalb einer späteren Modellierung wieder zu verwenden.
Unter dem Menüpunkt Protokolle kann das Infoprotokoll angesehen werden. Dieses enthält neben Informationen zum Modellautor, zur Modellversion oder zum Anwender auch Informationen zur Modelleffizienz (wie gut hat das Modell die gemessenen Werte abgebildet?), zum Modellaufbau (Welche Komponenten wurden wie oft benutzt?) und zur Modelllaufzeit.
Das Fehlerprotokoll dokumentiert eventuell aufgetretene Fehler.
Bild:Systemleiste_Protokolle.jpg
Unter dem Menüpunkt Hilfe können sie durch einen Klick auf JAMS online zur Onlinehilfe von JAMS gelangen.
Auswahls und Ausführung eines Modells
Möchten Sie eine Modellierung durchführen, so wählen sie im JAMS Launcher über den Punkt Datei/Modell laden die Modellbeschreibung aus. Modelle könne als *.xml bzw. *.jam Datei gelesen werden. Falls sie bei der Installation von JAMS den Installationsordner jams genannt haben und den Testdatensatz mit installiert haben, so finden Sie in Ordner jams/data die Beispielmodellbeschreibung j2k_gehlberg.jam.
Durch einen Klick auf den grünen Button in der Menüleiste starten Sie die Modellierung.
Bearbeiten der Modellparameter
Grundeinstellungen
- Workspace directory: Setzt das Arbeitsverzeichnis. Dieses muss drei weitere Ordner enthalten: Parameter (für alle Parameterfiles), Data (für alle Datenfiles) und Output (in den alle Ausgabefiles geschrieben werden).
- Time interval: Hier wird das Zeitintervall für das das Modell ausgeführt werden soll ausgewählt.
- Caching: Hierdurch können die Ergebnisse einiger rechenintensiver Vorgänge temporär auf der Festplatte gespeichert und in weiteren Modellläufen genutzt werden. Hierdurch ergibt sich eine geringfügig schnellere Modellausführung. Warnung: Dieses Feature ist derzeit aber noch nicht vollkommen sicher und sollte nur von erfahrenen Anwendern eingesetzt werden.
Diagramme und Karten
- Runoff plot: Aktiviert die graphische Darstellung von modelliertem und gemessenem Abfluss während des Modelllaufs.
- Soil moisture plot: Aktiviert die graphische Darstellung der relativen Bodenfeuchte während des Modelllaufs.
- Snow water equivalent: Aktiviert die graphische Darstellung des Schneewasseräquivalents während des Modelllaufs.
- Map enable: Ermöglicht die Ausgabe einer kartographischen Darstellung ausgesuchter Statusvariablen.
- Map attributes: Semikolon getrennte Liste der Statusvariablen, die kartographisch dargestellt werden sollen.
- Map3D enable: Ermöglicht die 3D Ausgabe einer kartographischen Darstellung ausgesuchter Statusvariablen.
- Map3D attributes: Semikolon getrennte Liste der Statusvariablen, die kartographisch dargestellt werden sollen.
Initialisierung
- Multiplier for field capacity : Hierdurch die maximale Speicherfüllung der Mittelporenspeicher (MPS) vergrössert (Wert > 1) oder verringert (Wert < 1) werden.
- Multiplier for air capicity: Hierdurch die maximale Speicherfüllung der Grobporenspeicher (LPS) vergrössert (Wert > 1) oder verringert (Wert < 1) werden.
- initRG1: relative Füllung des oberen Grundwasserspeichers bei Modellstart (1 komplett gefüllt, 0 leer).
- initRG2: relative Füllung des unteren Grundwasserspeichers bei Modellstart (1 komplett gefüllt, 0 leer).
Regionalisierung
- number of closest stations for regionalisation: Anzahl n der Stationen, die zur Berechnung des Datenwertes einer HRU herangezogen werden (es werden dann die n Stationen, die der jeweiligen HRU am nächsten liegen ausgewählt)
- Power of IDW function for regionalisation: Wichtungsfaktor mit dem die Entfernung jeder Station zur jeweiligen HRU potenziert wird.
- elevation correction on/off: Aktiviert die Höhenkorrektur der Datenwerte.
- r-sqrt threshold for elevation correction: Grenzwert zur Durchführung der Höhenkorrektur der Datenwerte. Ist das Bestimmtheitsmaß der Regressionsbeziehung zwischen den Stationsmesswerten und den Stationshöhen kleiner als dieser Wert, wird keine Höhenkorrektur durchgeführt.
Diese Einstellungen können für jede Eingangsvariable (d.h. Minimumtemperatur, Maximumtemperatur, mittlere Lufttemperatur, Niederschlag, absolute Luftfeuchte, Windgeschwindigkeit, Sonnenscheindauer) einzeln gemacht werden.
Strahlung
- flowRouteTA [h]: Laufzeit der Abflusswelle
Interzeption
- a_rain [mm]: Maximale Speicherkapazität des Interzeptionspicher pro m2 Blattfläche für Regen
- a_snow [mm]: Maximale Speicherkapazität des Interzeptionspicher pro m2 Blattfläche für Schnee
Schnee
- Component active: Aktiviert das Schneemodul.
- baseTemp [°C]: Temperaturgrenzwert für Schneeniederschlag.
- t_factor [mm/°C]: Temperaturfaktor zur Berechnung des Schneeschmelzabflusses
- r_factor [mm/°C]: Regenfaktor zur Berechnung des Schneeschmelzabflusses
- g_factor [mm]: Bodenwärmestromfaktor zur Berechnung des Schneeschmelzabflusses
- snowCritDens [g/cm³]: kritische Schneedichte
- ccf_factor [-]: Faktor zur Bestimmung des Kälteinhalts der Schneedecke
Bodenwasser
- MaxDPS [mm]: maximaler Muldenrückhalt
- PolRed [-]: Polynomischer Reduktionsfaktor zur Abminderung der potentiellen Verdunstung bei begrenztem Wasserangebot.
- LinRed [-]: Linearer Reduktionsfaktor zur Abminderung der potentiellen Verdunstung bei begrenztem Wasserangebot.
(Hinweis: PolRed oder LinRed stellen Alternativen dar. Nur einer darf mit einem Wert belegt sein, der andere muss dann auf 0 gesetzt werden.
- MaxInfSummer [mm]: maximale Infiltration im Sommerhalbjahr
- MaxInfWinter [mm]: maximale Infiltration im Winterhalbjahr
- MaxInfSnow [mm]: maximale Infiltration bei Schneebedeckung
- ImpGT80 [-]: relatives Infiltrationsvermögen von Flächen mit einem Versiegelungsgrad > 80%
- ImpLT80 [-]: relatives Infiltrationsvermögen von Flächen mit einem Versiegelungsgrad < 80%
- DistMPSLPS [-]: Kalibrierungskoeffizient zur Verteilung der Infiltration auf die Bodenspeicher LPS und MPS
- DiffMPSLPS [-]: Kalibrierungskoeffizient zur Bestimmung der Diffusionsmenge des LPS-Speicherinhaltes nach MPS am Ende eines Zeitschrittes
- OutLPS [-]: Kalibrierungskoeffizient zur Bestimmung des LPS-Ausflusses
- LatVertLPS [-]: Kalibrierungskoeffizient zur Verteilung des LPS-Ausflusses auf die laterale (Zwischenabfluss) und vertikale (Perkolation) Komponente.
- MaxPerc [mm]: maximale Perkolationsrate
- ConcRD1 [-]: Retentionskoeffizient für den direkten Abfluss
- ConcRD2 [-]: Retentionskoeffizient für den Zwischenabfluss
Grundwasser
- RG1RG2dist [-]: Kalibrierungskoeffizient zur Verteilung des Perkolationswassers
- RG1Fact [-]: Faktor für die Abflussdynamik des RG1
- RG2Fact [-]: Faktor für die Abflussdynamik des RG2
- CapRise [-]: Faktor für die Einstellung des kapillaren Aufstiegs
Routing im Fluss
- flowRouteTA [h]: Laufzeit der Abflusswelle
Visualisierung der Modellergebnisse in der Nachbereitung
Nachdem die Modellierung erfolgreich abgeschlossen worden ist, öffnet sich das folgenden Fenster automatisch:
Die ExeptionInfo enthält neben Informationen zum Modellautor, zur Modellversion oder zum Anwender auch Informationen zur Modelleffizienz (wie gut hat das Modell die gemessenen Werte abgebildet) und zur Modelllaufzeit.
Im Runoff Plot können Sie den simulierten mit dem gemessenen Abfluss vergleichen. Der Niederschlag wird in diesem Diagramm ebenfalls abgetragen.
Der SWE Plot enthält Informationen darüber wie viel Wasser als Schnee gespeichert wird.
Unter dem Punkt Map wird das Einzugsgebiet mit seinen Modellierungseinheiten angezeigt. Im rechten Fenster sind alle Variablen die im JAMS Launcher/Plots & Maps/Map attributes gewählt worden sind, aufgeführt. Diese können in den verschiedenen Darstellungen ausgewertet werden.
Den Variablenwert einer einzelnen Modellierungseinheit könne Sie erfragen, indem Sie auf die Modellierungseinheit klicken.
Die Karte kann mit ausgewählten Atrributen als *.shp exportiert werden.
Überblick über die implementierten Modell
Dieses Tutorium widment sich dem hydrologischen Modellsystem J2000. Das Hydrologische Modellsystem J2000g welches als vereinfachtes Modell etwickelt worden ist sowie das Modellsystem J2000-S welches den Wasser- und Stickstoffhaushalt zusätzlich berücksichtigt sind als Erweiterungen bzw. Einschränkugen des J2000 anzusehen. Im Folgenden werden die drei Modellsystem kurz vorgestellt:
J2000
Das hydrologische Modellsystem J2000 ermöglicht die physikalisch basierte Modellierung des Wasserhaushaltes großer Einzugsgebiete. Neben der Nachbildung der hydrologischen Prozesse, die in der oberen Meso- und der Makroskala Einfluss auf die Abflußbildung und -konzentration haben, enthält das Modellsystem Routinen, mit denen die punktuell vorliegenden Klima- und Niederschlagsmeßwerte mit einiger Sicherheit regionalisiert werden können. Außerdem ist die Berechnung der realen Bestandesverdunstung, mit der die Berechnung flächendifferenziert unter Berücksichtigung des Verdunstungsverhaltens unterschiedlicher Landnutzungsklassen erfolgt, direkt in das Modell integriert. Da das Modell für die Modellierung großer Einzugsgebiete mit mehreren 1000 km2 Fläche geeignet sein soll, ist sichergestellt, dass die Modellierung anhand der auf nationalem Maßstab verfügbaren Datengrundlagen betrieben werden kann.
Die Nachbildung der unterschiedlichen hydrologischen Prozesse erfolgt in abgeschlossenen, voneinander weitestgehend unabhängigen Programmodulen. Dies ermöglicht, dass einzelne Module verändert, ersetzt oder hinzugefügt werden können, ohne das Modell grundlegend neu strukturieren zu müssen.
J2000-S
Das Wasser- und Stofftransportmodell J2000-S ermöglicht die Simulation des Wasser- und Stickstoffhaushaltes von Mesoskaligen Einzugsgebieten. Das Modell stellt eine Erweiterung des Modells J2000 dar mit denen es die meisten Komponenten zur Beschreibung des hydrologischen Kreislaufs teilt. Zur Beschreibung des Stickstoffhaushalts werden die zusätzlichen Komponenten Bodentemperatur, Bodenstickstoffhaushalt, Landnutzungsmanagement, Pflanzenwachstum und Grundwasserstickstoffhaushalt beschrieben werden. Weitere Module wurden für die Erfordernisse des Stickstoffhaushalts angepasst.
J2000g
Das Modell J2000g wurde als vereinfachtes hydrologisches Modell entwickelt um zeitlich aggregierte, räumlich verteilte hydrologische Zielgrößen zu berechnen. Die Darstellung und Berechnung der hydrologischen Vorgänge erfolgt dabei eindimensional für eine beliebige Anzahl von Punkten im Raum. Durch diese Modellpunkte können unterschiedliche Distributionskonzepte (Response Units, Rasterzellen, Teileinzugsgebiete) gleichermaßen ohne weitere Modellanpassung eingesetzt werden.
Die zeitliche Diskretisierung der Modellierung kann entweder in Tagesschritten oder Monatschritten erfolgen. Während der Modellierung werden folgende Prozesse für jeden Zeitschritt berechnet: Regionalisierung von punktuell vorliegenden Klimadaten auf die jeweiligen Modelleinheiten, Berechnung von Global- und Nettostrahlung als Eingang für die Verdunstungsberechnung, Berechnung der landbedeckungsspezifischen potentiellen Verdunstung nach Penmam-Monteith, Schneeakkumulation und Schmelze, Bodenwasserhaushalt, Grundwasserneubildung, Abflussverzögerung (Translation und Retention). Die einzelnen Prozesse werden unten detailliert beschrieben.
Aufbereiten der Eingangsdaten
Aufbereitung eigener Eingangsdaten
Anwendung des implementierten Grass-HRU Werkzeugkastens
Please see GRASS-HRU.