Water and Nutrient Balance Model J2000-S

From ILMS-Wiki
(Difference between revisions)
Jump to: navigation, search
 
(Bodenstickstoffmodul)
Line 14: Line 14:
 
[[Bild:Bodenstickstoffmodul.jpg]]
 
[[Bild:Bodenstickstoffmodul.jpg]]
  
Abbildung 1: Struktur des Bodenstickstoffmoduls
+
Figure 1: Structure of the soil nitrogen module
  
Das hier eingesetzte Stickstoffmodul enthält einige starke Vereinfachungen. So wird keine Pflanzenaufnahme aus dem Ammoniumpool ermöglicht. Weiterhin wird die Dekomposition der organischen Substanz direkt zu Nitrat simuliert, statt den Umweg über Ammonium zu gehen. Die N-Immobilisierung von mineralischem zu organischem Stickstoff in der Bodenzone wird komplett vernachlässigt. Auch der Wassertransport von Stickstoff wird stark generalisiert abgebildet. So findet eine vollständige Durchmischung des Stickstoffs in den einzelnen Speichern statt, anstelle Advektion und Dispersion zu berücksichtigen. Die einzelnen Prozesse werden im Modell wie folgt beschrieben:
+
The here applied nitrogen module contains some simplifications. Thus, no Pflanzenaufnahme from the ammonium pool is offered. Furthermore, the decomposition of organic substances is directly simulated to nitrate without any detour via ammonium. The N immobilization from mineral to organic nitrogen in the soil zone is neglected completely. The water transport of nitrogen is shown very generalized. Thus, a complete mixing of nitrogen in the individual storages takes place instead of advection and dispersion. The individual processes are described in the model as follows:
  
  
 
===Pflanzenaufnahme===
 
===Pflanzenaufnahme===
  
Zunächst wird der Bedarf (potentielle Pflanzenaufnahme) der Pflanze an Tag t0 ermittelt, der vom Bodenstickstoffspeicher gedeckt werden soll:
+
At first, the plant’s demands (potential Pflanzenaufnahme) which shall be met by the soil nitrogen storage per day t0 are generated:  
 
    
 
    
 
<math> potNup= BioNopt - BioN \! </math> [1]
 
<math> potNup= BioNopt - BioN \! </math> [1]
  
mit:
+
with:
  
'' <math>potNup\!</math>  = potentielle Pflanzenaufnahme [kgN/ha]''
+
'' <math>potNup\!</math>  = potential Pflanzenaufnahme [kgN/ha]''
  
'' <math>BioNopt\!</math> = optimale Biomasse [kgN/ha]''
+
'' <math>BioNopt\!</math> = optimal biomass [kgN/ha]''
  
'' <math>BioN\!</math>    = aktulelle Biomasse [kgN/ha]''
+
'' <math>BioN\!</math>    = actual biomass [kgN/ha]''
  
Anschließend werden die Anteile der Bodenhorizonte ermittelt die innerhalb der effektiven Wurzelzone liegen. Hierbei werden die Horizonte die voll innerhalb der Wurzelzone liegen vollständig berücksichtigt (''partroot = 1''), während der Horizont der sind nur teilweise in der Wurzelzone befindet nur zu einem entsprechenden Anteil Berücksichtigung findet:
+
Afterwards, the proportions of the soil horizons which lie within the effective root zone are generated. At this, the horizons which lie completely within the root zone are taken into account completely (partroot = 1). However, the horizon which lies only partly in the root zone is only considered partly:  
  
 
<math> partroot[i] =  \frac {rootdepth - layerdepth[i - 1]}{layerdepth[i] - layerdepth[i - 1]} \! </math> [2]
 
<math> partroot[i] =  \frac {rootdepth - layerdepth[i - 1]}{layerdepth[i] - layerdepth[i - 1]} \! </math> [2]
  
mit:  
+
with:  
  
'' <math>i\!</math> = Horizont [-] ''
+
'' <math>i\!</math> = horizon [-] ''
  
'' <math>partroot\!</math> = Anteil des Horizonts an der Wurzelzone [-]''
+
'' <math>partroot\!</math> = proportion of the horizon at the root zone [-]''
  
'' <math>layerdepth\!</math> = Untergrenze des Bodenhorizonts [-]''
+
'' <math>layerdepth\!</math> = lower threshold of soil horizon [-]''
  
Die Verteilung der N-Aufnahme auf die einzelnen Horizonte findet in Abhängigkeit eines Kalibrationsparameters (<math>\beta_{Ndist}\!</math>) statt. Hier wird zunächst die potenzielle Aufnahme für die einzelnen Horizonte berechtet:
+
The allocation of the n-uptake to the individual horizons is carried out against a calibration parameter (<math>\beta_{Ndist}\!</math>). At this, the potential uptake for the individual horizons is calculated:  
  
 
<math>potNup_z[i] = \frac {potNup} {1 - \exp(-\beta_{Ndist})} \cdot \left(1 - \exp\left(-\beta_{Ndist} * \frac {layerdepth[i]} {rootdepth}\right)\right) - uptake[i-1]</math> [3]
 
<math>potNup_z[i] = \frac {potNup} {1 - \exp(-\beta_{Ndist})} \cdot \left(1 - \exp\left(-\beta_{Ndist} * \frac {layerdepth[i]} {rootdepth}\right)\right) - uptake[i-1]</math> [3]
  
mit:  
+
with:  
  
 
'' <math>i\!</math> = Horizont [-] ''
 
'' <math>i\!</math> = Horizont [-] ''
  
'' <math>partroot\!</math> = Anteil des Horizonts an der Wurzelzone [-]''
+
'' <math>partroot\!</math> = proportion of the horizon at the root zone [-]''
  
'' <math>layerdepth\!</math> = Untergrenze des Bodenhorizonts [-]''
+
'' <math>layerdepth\!</math> = lower threshold of the soil horizon [-]''
  
'' <math>potNup\!</math>  = potentielle Pflanzenaufnahme [kgN/ha]''
+
'' <math>potNup\!</math>  = potential Pflanzenaufnahme [kgN/ha]''
  
'' <math>potNup_z\!</math> = potentielle Pflanzenaufnahme in den einzelnen Horizonten [kgN/ha]''
+
'' <math>potNup_z\!</math> = potential Pflanzenaufnahme in the individual horizons [kgN/ha]''
  
'' <math>uptake\!</math> = potentielle Pflanzenaufnahme die bereits von oben liegenden Horizonten entnommen wurde [kgN/ha]''
+
'' <math>uptake\!</math> = potential Pflanzenaufnahme which has been taken from upper horizons already [kgN/ha]''
  
'' <math>\beta_{Ndist}\!</math> = Verteilungssparameter der Pflanzenaufnahme; Vorgabewert = 1.0; mögliche Werte 1 - 15 [-]''
+
'' <math>\beta_{Ndist}\!</math> = distribution parameter of the Pflanzenaufnahme; default value = 1.0; possible values 1 - 15 [-]''
 
+
Für die Berechnung der potentiellen Pflanzenaufnahme die bereits von oben liegenden Horizonten gedeckt wurde wird der folgende Zusammenhang verwendet:
+
  
 +
For the calculation of the potential Pflanzenaufnahme which is covered by upper horizons already, the following connection is applied:
 
<math> uptake = uptake + potNup_z[i] \! </math> [4]
 
<math> uptake = uptake + potNup_z[i] \! </math> [4]
  
'' <math>potNup_z\!</math> = potentielle Pflanzenaufnahme in den einzelnen Horizonten [kgN/ha]''
+
'' <math>potNup_z\!</math> = potential Pflanzenaufnahme in the individual horizons [kgN/ha]''
  
'' <math>uptake\!</math> = potentielle Pflanzenaufnahme die bereits von oben liegenden Horizonten entnommen wurde [kgN/ha]''
+
'' <math>uptake\!</math> = potential Pflanzenaufnahme which has been taken from upper horizons already [kgN/ha]''
  
  
Die Berechnung eines Bedarfs erfolgt nach folgender Beziehung:
+
The calculation of a demand is carried out according to the following equation:  
  
 
<math> demand = (NO_3Pool[i] \cdot partroot[i]) - potNup_z[i] \! </math> [5]
 
<math> demand = (NO_3Pool[i] \cdot partroot[i]) - potNup_z[i] \! </math> [5]
  
mit:  
+
with:  
  
'' <math>i\!</math> = Horizont [-] ''
+
'' <math>i\!</math> = horizon [-] ''
  
'' <math>partroot\!</math>t = Anteil des Horizonts an der Wurzelzone [-]''
+
'' <math>partroot\!</math>t = proportion of the horizon of the root zone [-]''
  
'' <math>demand\!</math> = Bedarf der vom Bodenstickstoffpool gedeckt werden kann [kgN/ha]''
+
'' <math>demand\!</math> = demand that can be met by the soil nitrogen pool [kgN/ha]''
  
'' <math>NO_3Pool\!</math> = Bodenstickstoffpool  [kgN/ha]''
+
'' <math>NO_3Pool\!</math> = soil nitrogen pool [kgN/ha]''
  
'' <math>potNup_z\!</math> = potentielle Pflanzenaufnahme in den einzelnen Horizonten [kgN/ha]''
+
'' <math>potNup_z\!</math> = potential Pflanzenaufnahme in the individual horizons [kgN/ha]''
  
Ist dieser Bedarf größer 0 kann er durch den vorhandenen Bodenstickstoffspeicher gedeckt werden mit:
+
If this demand is greater than 0, it can be met by the existing nitrogen storage with:  
  
 
<math>
 
<math>
Line 100: Line 99:
 
</math>
 
</math>
  
und
+
and
  
 
<math>
 
<math>
Line 110: Line 109:
 
</math>
 
</math>
  
mit
+
with
  
'' <math>i\!</math> = Horizont [-] ''
+
'' <math>i\!</math> = horizon [-] ''
  
'' <math>demand\!</math> = Bedarf der vom Bodenstickstoffpool gedeckt werden kann [kgN/ha]''
+
'' <math>demand\!</math> = demand that can be met by the soil nitrogen pool [kgN/ha]''
  
'' <math>NO_3Pool1\!</math> = Bodennitratpool vor dem Zeitschritt [kgN/ha]''
+
'' <math>NO_3Pool1\!</math> = soil nitrate pool before the time step [kgN/ha]''
  
'' <math>NO_3Pool2\!</math> = Bodennitratpool nach dem Zeitschritt [kgN/ha]''
+
'' <math>NO_3Pool2\!</math> = soil nitrate pool after the time step [kgN/ha]''
  
'' <math>potNupz\!</math> = potentielle Pflanzenaufnahme in den einzelnen Horizonten [kgN/ha]''
+
'' <math>potNupz\!</math> = potential Pflanzenaufnahme in the individual horizons [kgN/ha]''
  
'' <math>partroot\!</math> = Anteil des Horizonts an der Wurzelzone [-]''
+
'' <math>partroot\!</math> = proportion of the horizon of the root zone [-]''
  
  
Line 129: Line 128:
 
<math> N_{uptake} = potNup + \sum^{n}_{i=1}{demand[i]}  \! </math> [10]  
 
<math> N_{uptake} = potNup + \sum^{n}_{i=1}{demand[i]}  \! </math> [10]  
  
mit
+
with
  
'' <math>i\!</math> = Horizont [-] ''
+
'' <math>i\!</math> = horizon [-] ''
  
'' <math>n\!</math> = Anzahl der Horizonte innerhalb der Wurzelzone [-] ''
+
'' <math>n\!</math> = proportion of the horizon of the root zone [-] ''
  
'' <math>demand\!</math> = Bedarf der vom Bodenstickstoffpool gedeckt werden kann [kgN/ha]''
+
'' <math>demand\!</math> = demand which can be met by the soil nitrogen pool [kgN/ha]''
  
'' <math>potNup\!</math>  = potentielle Pflanzenaufnahme [kgN/ha]''
+
'' <math>potNup\!</math>  = potential Pflanzenaufnahme [kgN/ha]''
  
'' <math>N_{uptake}\!</math>  = aktuelle Pflanzenaufnahme [kgN/ha]''
+
'' <math>N_{uptake}\!</math>  = actual Pflanzenaufnahme [kgN/ha]''
  
 
===Mit der Evaporation aufsteigendes Nitrat===
 
===Mit der Evaporation aufsteigendes Nitrat===

Revision as of 13:36, 9 December 2009

Das Wasser- und Stofftransportmodell J2000-S ermöglicht die Simulation des Wasser- und Stickstoffhaushaltes von Mesoskaligen Einzugsgebieten. Das Modell stellt eine Erweiterung des Modells J2000 dar mit denen es die meisten Komponenten zur Beschreibung des hydrologischen Kreislaufs teilt. Zur Beschreibung des Stickstoffhaushalts werden die zusätzlichen Komponenten Bodentemperatur, Bodenstickstoffhaushalt, Landnutzungsmanagement, Pflanzenwachstum und Grundwasserstickstoffhaushalt beschrieben werden. Weitere Module wurden für die Erfordernisse des Stickstoffhaushalts angepasst.



Contents

Bodenstickstoffmodul

Die Beschreibung des Bodenstickstoffhaushalts erfolgt analog zu der im Modell SWAT (Arnold et al. 1998). Hierbei werden in den einzelnen Bodenhorizonten die 5 Stickstoffpools für Nitrat, Ammonium, stabile organische Substanz, aktive organische Substanz, frische Pflanzenrest Biomasse unterschieden. Die Flüsse und Transformationen zwischen den Pools und außerhalb des Bodens: Nitrifikation, Denitrifikation, Mineralisation, Volatilation, Pflanzenaufnahme und Auswaschung, werden durch empirische Beziehungen in Abhängigkeit der Bodenfeuchte und Bodentemperatur berechnet. Der Nitratfluss wird äquivalent zum Wassertransport durch ein Routingverfahren zwischen den Teilflächen und zum Vorfluter weitergegeben (vgl. Abbildung 1).

Der Stickstoffeintrag über Düngung und Bestandesabfall wird, ebenso wie der Entzug durch die Pflanzen, vom Pflanzenwachstums- und Landnutzungsmanagementmodul bereitgestellt. Die mineralischen Einträge werden dem Ammoniumpool oder direkt dem Nitratpool zugeführt. Der organische Stickstoff geht entweder in die Pools für den Bestandesabfall oder in den aktiven organischen Pool ein. Der Abbau des Bestandesabfalls geht in Abhängigkeit vom C/N-Verhältnis in Anteilen in den Nitratpool oder in den aktiven organischen Pool ein. Der aktive organische Pool steht im Gleichgewicht mit dem stabilen organischen Pool. Der Nitratpool stellt die zentrale Verteilstelle für die Austräge in Form von Auswaschung, Pflanzenaufnahme und Denitrifikation dar. Die im Modul beschriebenen Prozesse finden in verschiedenen frei parametrisierbaren Bodenhorizonten statt. Hierbei beschränken sich die Zuführung von organischer Substanz und Dünger und die Abfuhr von Stickstoff mit dem Oberflächenabfluss auf den obersten Horizont.


Bild:Bodenstickstoffmodul.jpg

Figure 1: Structure of the soil nitrogen module

The here applied nitrogen module contains some simplifications. Thus, no Pflanzenaufnahme from the ammonium pool is offered. Furthermore, the decomposition of organic substances is directly simulated to nitrate without any detour via ammonium. The N immobilization from mineral to organic nitrogen in the soil zone is neglected completely. The water transport of nitrogen is shown very generalized. Thus, a complete mixing of nitrogen in the individual storages takes place instead of advection and dispersion. The individual processes are described in the model as follows:


Pflanzenaufnahme

At first, the plant’s demands (potential Pflanzenaufnahme) which shall be met by the soil nitrogen storage per day t0 are generated:

 potNup= BioNopt - BioN \! [1]

with:

potNup\! = potential Pflanzenaufnahme [kgN/ha]

BioNopt\! = optimal biomass [kgN/ha]

BioN\! = actual biomass [kgN/ha]

Afterwards, the proportions of the soil horizons which lie within the effective root zone are generated. At this, the horizons which lie completely within the root zone are taken into account completely (partroot = 1). However, the horizon which lies only partly in the root zone is only considered partly:

 partroot[i] =  \frac {rootdepth - layerdepth[i - 1]}{layerdepth[i] - layerdepth[i - 1]} \! [2]

with:

i\! = horizon [-]

partroot\! = proportion of the horizon at the root zone [-]

layerdepth\! = lower threshold of soil horizon [-]

The allocation of the n-uptake to the individual horizons is carried out against a calibration parameter (\beta_{Ndist}\!). At this, the potential uptake for the individual horizons is calculated:

potNup_z[i] = \frac {potNup} {1 - \exp(-\beta_{Ndist})} \cdot \left(1 - \exp\left(-\beta_{Ndist} * \frac {layerdepth[i]} {rootdepth}\right)\right) - uptake[i-1] [3]

with:

i\! = Horizont [-]

partroot\! = proportion of the horizon at the root zone [-]

layerdepth\! = lower threshold of the soil horizon [-]

potNup\! = potential Pflanzenaufnahme [kgN/ha]

potNup_z\! = potential Pflanzenaufnahme in the individual horizons [kgN/ha]

uptake\! = potential Pflanzenaufnahme which has been taken from upper horizons already [kgN/ha]

\beta_{Ndist}\! = distribution parameter of the Pflanzenaufnahme; default value = 1.0; possible values 1 - 15 [-]

For the calculation of the potential Pflanzenaufnahme which is covered by upper horizons already, the following connection is applied:  uptake = uptake + potNup_z[i] \! [4]

potNup_z\! = potential Pflanzenaufnahme in the individual horizons [kgN/ha]

uptake\! = potential Pflanzenaufnahme which has been taken from upper horizons already [kgN/ha]


The calculation of a demand is carried out according to the following equation:

 demand = (NO_3Pool[i] \cdot partroot[i]) - potNup_z[i] \! [5]

with:

i\! = horizon [-]

partroot\!t = proportion of the horizon of the root zone [-]

demand\! = demand that can be met by the soil nitrogen pool [kgN/ha]

NO_3Pool\! = soil nitrogen pool [kgN/ha]

potNup_z\! = potential Pflanzenaufnahme in the individual horizons [kgN/ha]

If this demand is greater than 0, it can be met by the existing nitrogen storage with:


NO_3Pool2[i] = 
\begin{cases}
NO_3Pool1[i] - potNup_z[i] & \mathrm{f\ddot{u}r} \; \; demand >= 0 \\
NO_3Pool1[i] - (NO_3Pool1[i] \cdot partroot[i])& \mathrm{f\ddot{u}r} \; \; demand < 0
\end{cases}

and


demand = 
\begin{cases}
demand[i] = 0  & \mathrm{f\ddot{u}r}\; \; demand >= 0 \\
demand[i] = demand &\mathrm{f\ddot{u}r} \; \; demand < 0
\end{cases}

with

i\! = horizon [-]

demand\! = demand that can be met by the soil nitrogen pool [kgN/ha]

NO_3Pool1\! = soil nitrate pool before the time step [kgN/ha]

NO_3Pool2\! = soil nitrate pool after the time step [kgN/ha]

potNupz\! = potential Pflanzenaufnahme in the individual horizons [kgN/ha]

partroot\! = proportion of the horizon of the root zone [-]


Anschließend berechnet sich die aktuelle Pflanzenaufnahme aus der potentiellen Pflanzenaufnahme und dem über die Horizonte summierten Bedarf:

 N_{uptake} = potNup + \sum^{n}_{i=1}{demand[i]}  \! [10]

with

i\! = horizon [-]

n\! = proportion of the horizon of the root zone [-]

demand\! = demand which can be met by the soil nitrogen pool [kgN/ha]

potNup\! = potential Pflanzenaufnahme [kgN/ha]

N_{uptake}\! = actual Pflanzenaufnahme [kgN/ha]

Mit der Evaporation aufsteigendes Nitrat

Mit der Evaporationsstrom wird Bodenwasser aus tieferen Schichten in den obersten Horizont transportiert. Dies geschieht für jeden Horizont nach der Methode von SWAT in der Form:

 n_{upmove} = 0.1 \cdot NO_3Pool \cdot \frac {aEvap} {act_{LPS} + act_{MPS} + sto_{FPS}} \! [1]

mit

n_{upmove}\! = Stickstoffmenge aus dem einzelnen Horizont, die durch Evaporation verlagert wird. [kgN/ha]

NO_3Pool\! = Bodenstickstoffpool [kgN/ha]

aEvap\! = aktuelle Evapotranspiration des Horizonts [l]

act_{LPS}\! = aktueller Grobporenspeicher des Horizonts [l]

act_{LPS}\! = aktueller Mittelporenspeicher des Horizonts [l]

sto_{FPS}\! = Feinporenspeicher des Horizonts [l]

Transformationsprozesse im Boden

Nitrifikation und Ammonium Volatilation

Die Umsetzungsprozesse des Ammoniumpools sind in diesem Modell die Nitrifikation von Ammonium zu Nitrat und die Ammonium Volatilation. Die Kalkulation des Gesamtumsatzes des Ammoniumpools findet für die beiden Prozesse gemeinsam statt. Anschließend werden die Raten für beide Prozesse separiert. Zur Darstellung des Einflusses der Temperatur wird der folgende Koeffizient berechnet:

 \eta_{temp} = 0.41 \cdot \frac {temp_{Layer} - 5} {10}\! [1]

mit

\eta_{temp}\! = Bodentemperaturkoeffizient [-]

temp_{Layer}\! = Temperatur der Bodenschicht [°C]


Der Einfluss der Bodenfeuchte auf die Nitrifikation wird durch den Koeffizienten eta_water beschreiben:

für  act_{LPS} + act_{MPS} < 0.25 \cdot (sto_{LPS} + sto_{MPS})\!

 \eta_{water} = \frac{act_{LPS} + act_{MPS} + sto_{FPS}} {0.25 \cdot (sto_{LPS} + sto_{MPS} + sto_{FPS})} \! [2]

für  act_{LPS} + act_{MPS} >= 0.25 \cdot (sto_{LPS} + sto_{MPS}) \!

 \eta_{water} = 1 \! [3]

mit

 \eta_{water}\! = Bodenfeuchtekoeffizient [-]

sto_{LPS}\! = maximaler Grobporenspeicher des Horizonts [l]

sto_{MPS}\! = maximaler Mittelporenspeicher des Horizonts [l]

sto_{FPS}\! = maximaler Feinporenspeicher des Horizonts [l]

act_{LPS}\! = aktueller Grobporenspeicher des Horizonts [l]

act_{MPS}\! = aktueller Mittelporenspeicher des Horizonts [l]


Die Abhängigkeit der Ammoniumvolatilation von der Bodentiefe wird mit der folgenden Gleichung beschrieben:

\eta_{vol_z} = 1 - \frac {layerdepth} {layerdepth + \exp (4.706 - (0.305 \cdot \frac {layerdepth}{20}))}\!

\eta_{vol_z}\! = Bodentiefekoeffizient [-]

layerdepth\! = Untergrenze des Bodenhorizonts [cm]

Der Gesamtumsatz des Ammoniumpools errechnet sich wie folgt:

 N_{nit + vol} = NH_4Pool * (1 - \exp(-(\eta_{water} \cdot \eta_{temp})-(\eta_{vol_z} \cdot \eta_{temp})))\!

Aufgeteilt wird dieser Gesamtumsatz anschließend in:

 frac_{nitr} = 1 - \exp(-(\eta_{water} \cdot \eta_{temp}))\!

 frac_{vol} = 1 - \exp(-(\eta_{vol_z} \cdot \eta_{temp}))\!

nitri_{trans} =  (frac_{nitr} /(frac_{nitr} + frac_{vol})) \cdot N_{nit + vol} \!

volati_{trans} =  (frac_{vol} /(frac_{nitr} + frac_{vol})) \cdot N_{nit + vol} \!

mit

 \eta_{water} \! = Bodenfeuchtekoeffizient [-]

\eta_{temp}\! = Bodentemperaturkoeffizient [-]

\eta_{vol_z}\! = Bodentiefekoeffizient [-]

 NH_4Pool\! = Bodenfeuchtekoeffizient [kgN/ha]

N_{nit + vol}\! = Gesamtumsatzes des Ammoniumpools [kgN/ha]

frac_{nitr}\! = Fraktion Nitrifikation [-]

frac_{vol}\! = Fraktion Ammoniumvolatilation [-]

nitri_{trans}\! = Menge Nitrifikation [kgN/ha]

volati_{trans}\! = Menge Ammoniumvolatilation [kgN/ha]


Vorberechnungen zum Einfluss der Umgebungsbedingungnen

Um den Einfluss der Bodentemperatur und der Bodenfeuchte in den verschiedenen Transformationsprozessen darzustellen werden vorab für jeden Horizont die folgenden Koeffizienten berechnet:

 \gamma_{temp} = 0.9 \cdot \frac {temp_{Layer}} {temp_{Layer} \cdot \exp(9.93 - 0.312 \cdot temp_{Layer}} + 0.1 \! [1]

mit

\gamma_{temp}\! = Bodentemperaturkoeffizient [-]

temp_{Layer}\! = Temperatur der Bodenschicht [°C]


 \gamma_{water} =  \frac {act_{LPS} + act_{MPS} + sto_{FPS}} {sto_{LPS} + sto_{MPS} + sto_{FPS})} \! [2]

mit

\gamma_{water}\! = Bodenfeuchtekoeffizient [-]

sto_{LPS}\! = maximaler Grobporenspeicher des Horizonts [l]

sto_{MPS}\! = maximaler Mittelporenspeicher des Horizonts [l]

sto_{FPS}\! = maximaler Feinporenspeicher des Horizonts [l]

act_{LPS}\! = aktueller Grobporenspeicher des Horizonts [l]

act_{MPS}\! = aktueller Mittelporenspeicher des Horizonts [l]


Transfer zwischen den organischen Pools

Der Transfer zwischen dem aktiven und dem stabilen organischen Pool wird mit der folgenden Gleichung berechnet:

N_{Hum_{trans}} = \beta_{trans} \cdot (N_{activ_{pool}} \cdot (\frac{1} {fr_{actN}} -1) - N_{stabel_{pool}})\!

mit

N_{Hum_{trans}}\! = Transferrate zwischen aktiven und dem stabilen organischen Pool [kgN/ha]

\beta_{trans}\! = Transferkonstante zwischen aktiven und dem stabilen organischen Pool; Vorgabewert = 0.00001 [-]

N_{activ_{pool}}\! = Aktiver organischer Pool [kgN/ha]

N_{stabel_{pool}}\! = Stabiler organischer Pool [kgN/ha]

fr_{actN}\! = Fraktion des organischen Stickstoffs im aktiven organischen Pool = 0.02 [-]

Die Transferrate wird hierbei vom aktiven Pool subtrahiert währen sie zu dem stabilen Pool hinzuaddiert wird.

Mineralisierung des aktiven Pools

Der aktive Pool wird unter Auslassung der Nitrifikation direkt zu Nitrat mineralisiert. Die Rate wird hierbei wie folgt berechnet:

N_{actmin} = \beta_{min} \cdot \sqrt{\gamma_{temp} \cdot \gamma_{water}} \cdot N_{activ_{pool}}\!

mit

N_{actmin}\! = Transferrate zwischen aktiven organischen und dem Nitratpool [kgN/ha]

\beta_{min}\! = Transferkonstante zwischen aktiven organischen und dem Nitratpool; Vorgabewert = 0.002 [-]

N_{activ_{pool}}\! = Aktiver organischer Pool [kgN/ha]

\gamma_{water}\! = Bodenfeuchtekoeffizient [-]

\gamma_{temp}\! = Bodentemperaturkoeffizient [-]

Die Transferrate wird hierbei vom aktiven Pool subtrahiert währen sie zu dem Nitratpool hinzuaddiert wird.


Dynamik der Residuenpools

Die Dynamik des Abbaus frischer organischer Substanz (Residuen) aus Pflanzenresten und organischem Dünger erfolgt nur im obersten Bodenhorizont. Die Residuen werden hierbei in zwei Pools aufgeteilt, der Erste repräsentiert die Biomasse als ganzes und der Zweite den Stickstoffanteil der Residuen. Die Zufuhr zu den Residuenpools erfolgt über Pflanzenreste nach der Ernte und über die organische Düngung mit Hilfe der folgenden Gleichungen:

Residue_{pool} = Residue_{pool} + inp_{biomass} + (fertorgN_{fresh} \cdot 10)\!

N_{residue_{pool}} = N_{residue_{pool}} + inpN_{biomass} + fertorgN_{fresh}\!

mit

Residue_{pool}\! = Residuenpool [kg/ha]

inp_{biomass}\! = Zugeführte Biomasse [kg/ha]

fertorgN_{fresh}\! = Über organische Düngung zugeführter Stickstoff [kgN/ha]

N_{residue_{pool}}\! = Stickstoffanteil des Residuenpools [kgN/ha]

Der Abbau des Residuenpools findet in Abhängigkeit des Kohlenstoff- Stickstoffverhältnisses (C/N-Verhältnis) statt. Die Berechnung des C/N-Verhältnisses erfolgt wie in der nachstehenden Gleichung angegeben.

\epsilon_{C/N} = \frac{Residue_{pool} \cdot 0.58} {N_{residue_{pool}} + NO_3Pool}


\gamma_{ntr} = min
\begin{cases}
\exp(-0.693 \cdot\frac{\epsilon_{C/N} - 25} {25})\\
1.0 
\end{cases}


mit

\epsilon_{C/N}\! = C/N-Verhältnis [-]

\gamma_{ntr}\! = Residuenabbaufaktor [-]

Residue_{pool}\! = Residuenpool [kg/ha]

NO_3Pool\! = Nitratpool [kgN/ha]

N_{residue_{pool}}\! = Stickstoffanteil des Residuenpools [kgN/ha]


Aus γntr, γwater, γtemp rechnet sich die Abbaukonstante des Residuenpools:

\delta_{ntr} = \beta_{rsd} \cdot \gamma_{ntr} \cdot \sqrt{\gamma_{water} \cdot \gamma_{temp}}\!


mit

\delta_{ntr}\! = Konstante der Rate des Residuenabbaus [-]

\gamma_{ntr}\! = Residuenabbaufaktor [-]

\beta_{rsd}\! = Residuenabbaukoeffizient; Vorgabewert = 0.05 [-]

\gamma_{water}\! = Bodenfeuchtekoeffizient [-]

\gamma_{temp}\! = Bodentemperaturkoeffizient [-]

Der Abbau des Residuenpools erfolgt anhand der Konstante der Rate des Residuenabbaus. Dabei wird der Stickstoffteil auf den aktiven organischen Pool, im Sinne einer Humifizierung und den Nitratpool im Sinne einer Mineralisierung, im Verhätnis 20 zu 80% aufgeteilt:

Residue_{pool}2 = Residue_{pool}1 - (\delta_{ntr} \cdot Residue_{pool}1)\!

N_{active_{pool}}2 = N_{active_{pool}}1 + (0.2 \cdot \delta_{ntr} \cdot N_{residue_{pool}}1)\!

NO_3Pool2 = NO_3Pool1 + (0.8 \cdot delta_ntr \cdot N_{residue_{pool}}1)\!

N_{residue_{pool}}2 = N_{residue_{pool}}1 - (\delta_{ntr} \cdot N_{residue_{pool}}1)\!

mit

\delta_{ntr}\! = Konstante der Rate des Residuenabbaus [-]

Residue_{pool}1\! = Residuenpool vor dem Zeitschritt [kgN/ha]

Residue_{pool}2\! = Residuenpool nach dem Zeitschritt [kgN/ha]

N_{active_{pool}}1\! = Aktiver organischer Pool vor dem Zeitschritt [kgN/ha]

N_{active_{pool}}2\! = Aktiver organischer Pool nach dem Zeitschritt [kgN/ha]

NO_3Pool1\! = Bodennitratpool vor dem Zeitschritt [kgN/ha]

NO_3Pool2\! = Bodennitratpool nach dem Zeitschritt [kgN/ha]

N_{residue_{pool}}1\! = Stickstoffanteil des Residuenpools vor dem Zeitschritt [kgN/ha]

N_{residue_{pool}}2\! = Stickstoffanteil des Residuenpools nach dem Zeitschritt [kgN/ha]

Denitrifikation

Denitrifikation findet statt wenn der Boden sich in einem nahezu wassergesättigten Zustand befindet. Die Rate ist dabei abhängig von dem Gehalt an organischem Kohlenstoff im Boden und der Bodentemperatur. Abweichend von SWAT (0,95) liegt der Grad der Wassersättigung bei dem Denitrifikation stattfindet mit 0,91 niedriger. Dies ist dadurch begründet, Dass SWAT die Luftkapazität des Bodens im Gegensatz zu J2000 nicht berücksichtigt und somit in J2000 das zu Grunde liegende Porenvolumen, bei der Berechnung der Wassersättigung größer ist. Es wird weiterhin sichergestellt, dass die Rate höchstens 1 kgN/ha*d beträgt, da höhere Raten im Freiland nicht zu erwarten sind.



denit_{trans} = 
\begin{cases}
NO_3Pool \cdot (1 - \exp(-1.4 \cdot \gamma_{temp} \cdot C_{org}))& \mathrm{f\ddot{u}r} \; \; \gamma_{water} \ge \beta_{denit} \\
0.0  & \mathrm{f\ddot{u}r}\; \; \gamma_{water} < \beta_{denit} 
\end{cases}

mit

NO_3Pool\! = Bodennitratpool [kgN/ha]

denit_{trans}\! = Denitrifikationsrate [kgN/ha]

\gamma_{water}\! = Bodenfeuchtekoeffizient [-]

\gamma_{temp}\! = Bodentemperaturkoeffizient [-]

\beta_{denit}\! = Denitrifikationskoeffizient; Vorgabewert = 0.91 [-]


Stofftransport mit der Wasserbewegung im Boden

Stickstoffkonzentration des mobilen Wassers

Für die Simulation des Stofftransports mit der Wasserbewegung wird zunächst die Stickstoffkonzentration des mobilen Wassers bestimmt. Hierbei wird vereinfachend angenommen, dass ausschließlich der Stickstoff des Nitratpools mobil ist und somit in die Berechnung eingeht. Die Wassermenge bestimmt sich aus den Bodenspeichern und den den Horizont verlassenden Wasserflüssen.


soil_{water} = act_{LPS} + act_{MPS} + sto_{FPS}\!


mobile_{water} = 
\begin{cases}
(RD1_{out} * Beta_{NO_{3}}) + RD2_{out} + h_{perco} + hor_{by_{infilt}} + diff_{out} & \mathrm{f\ddot{u}r} \; \; Horizont = 1 \\
RD2_{out} + h_{perco} + hor_{by_{infilt}} + diff_{out}& \mathrm{f\ddot{u}r} \; \; i > Horizont < n\\
RD2_{out} + h_{perco} + diff_{out}& \mathrm{f\ddot{u}r} \; \; Horizont = n
\end{cases}

concN_{mobile} = \frac {NO_3Pool * (1 - \exp \frac{- mobile_{water}}  {(1 - \theta_{nit}) * soil_{water}})}  {mobile_{water}}

mit

NO_3Pool\! = Bodennitratpool [kgN/ha]

soil_{water}\! = Bodenwassergehalt [mm]

mobile_{water}\! = Menge an Mobilem Wasser [mm]

\Beta_{NO_{3}}\! = Perkolationskoeffizient; Vorgabewert = 0.2 [-]

RD1_{out}\! = Oberflächenabfluss [mm]

RD2_{out}\! = Interflow [mm]

h_{perco}\! = Perkolation in tieferen Horizont bzw. Grundwasser [mm]

hor_{by_{infilt}}\! = Infiltrations Wasser, dass in einem Zeitschritt in tiefere Schichten vordringt und somit den aktuellen Horizont "bypasst" [mm]

diff_{out}\! = Wasser, dass durch Diffusion den Horizont verlässt [mm]

\theta_{nit}\! = Fraktion des Porenvolumens von dem Anionen ausgeschlossen sind (durch positiven Ladungsüberschuss der Tonminerale); Vorgabewert = 0.05 [-]

 concN_{mobile}\! = Stickstoffkonzentration des mobilen Wassers [kgN/ha*mm]

Das der Einfluss des Infiltrations Wassers, dass dass in einem Zeitschritt in tiefere Schichten vordringt wird mit Hilfe eines Parameters (infil_{conc_{factor}}) wie folgt bestimmt. Dabei repräsentiert dieser Parameter in wie weit das "Bypasswasser" mit der Bodenmatrix interagiert oder in Makroporen an den durchflossenen Schichten vorbeifliest.

hor_{by_{infilt}}[i-1] = \sum^{n}_{i}{hor_{by_{infilt}}} * infil_{conc_{factor}}  \!

mit

hor_{by_{infilt}}\! = Infiltrations Wasser, dass in einem Zeitschritt in tiefere Schichten vordringt und somit den aktuellen Horizont "bypasst" [mm]

infil_{conc_{factor}}\! = Bypassparameter [mm]

i\! = Aktueller Horizont [-]

n\! = Anzahl der Horizonte [-]

Stickstofftransport in den Abflusskomponenten

Basierend auf der Stickstoffkonzentration des mobilen Wassers werden für die einzelnen Horizonte die Stickstofffrachten für die Abflusskomponenten berechnet. Hierbei wird der Interflow in allen Horizonten und der Oberflächenabfluss nur im obersten Horizont berücksichtigt, während die Perkolation immer in den tiefer gelegenen Horizont bzw. in die Grundwasserspeicher erfolgt.

N_{surface} = Beta_{NO_3} \cdot RD1_{out} \cdot concN_{mobile}\!

N_{interflow} = RD2_{out} \cdot concN_{mobile}\!

N_{perco} = (hor_{by_{infilt}} + h_{perco}) \cdot concN_{mobile}\!


mit

 concN_{mobile}\! = Stickstoffkonzentration des mobilen Wassers [kgN/ha*mm]

hor_{by_{infilt}}\! = Infiltrations Wasser, dass in einem Zeitschritt in tiefere Schichten vordringt und somit den aktuellen Horizont "bypasst" [mm]

N_{surface}\! = Stickstoff im Oberflächenabfluss [kgN/ha]

N_{interflow}\! = Stickstoff im Interflow [kgN/ha]

N_{perco}\! = Stickstoff im Perkolationswasser [kgN/ha]

RD1_{out}\! = Oberflächenabfluss [mm]

RD2_{out}\! = Interflow [mm]

h_{perco}\! = Perkolation [mm]

Beta_{NO_3}\! = Percolationskoeffizient [-]

Der Perkolationskoeffizient stellt dabei ein Maß für die Interaktion des Oberflächenabfluss mit der Bodenmatrix des obersten Horizontes dar und Bestimmt somit den Stickstoffgehalt des Oberflächenabflusses.

Der Stoff der mit dem Diffusionswasser den Horizont verlässt wird wie folgt berechnet. Als Diffusion wird dabei die Wasserbewegung bezeichnet die aufgrund von Potentialgradienten oberhalb der Feldkapazität stattfindet. Ein negativer Wert für das Diffusionswasser bedeutet hierbei eine absteigende Wasserbewegung während ein positiver Wert eine aufsteigende Wasserbewegung repräsentiert.



diffoutN = 
\begin{cases}
w_{l_{diff}}[i] * ConcN_{mobile}[i] & \mathrm{f\ddot{u}r} \; \; w_{l_{diff}} < 0 \\
w_{l_{diff}}[i] * ConcN_{mobile}[i+1] & \mathrm{f\ddot{u}r} \; \; w_{l_{diff}} < 0
\end{cases}

und

NO_3Pool[i] = NO_3Pool[i] + diffoutN \!

und

NO_3Pool[i+1] = NO_3Pool[i+1] - diffoutN \!

mit

 concN_{mobile}\! = Stickstoffkonzentration des mobilen Wassers [kgN/ha*mm]

diffoutN \! = Stickstoff im Diffussionswasser [kgN/ha]

NO_3Pool\! = Bodennitratpool [kgN/ha]

w_{l_{diff}}\! = Diffussionswasser [mm]

i\! = Bodenhorizont [kgN/ha]





Bodentemperaturmodul

Für die Stoffhaushaltsmodellierung ist die Bodentemperatur eine bedeutende Steuergröße. Insbesondere mikrobiologische Prozesse wie Nitrifikation, Denitrifikation und Umsetzung von organischem Stickstoff in der Bodenzone werden stark von der vorherrschenden Temperatur beeinflusst. Auch in dem hier erstellten Modell J2K-S spielt die Bodentemperatur bei der Berechnung der folgenden Prozesse eine Rolle (vgl. Bodenstickstoffmodul):

• Nitrifikation

• Volatilation

• Umsetzung organischer Substanz

• Abbau von Pflanzenresten

• Denitrifikation


Aufbau des Moduls


Die Bodentemperatur wird in Anlehnung an die empirischen Routinen von SWAT (Arnold et al. 1998) und EPIC (Williams et al. 1984) simuliert. Zunächst wird aus der Lufttemperatur und der Einstrahlung eine Bodenoberflächentemperatur für unbewachsenen Boden ermittelt. Diese Oberflächentemperatur wird durch Dämpfungsfaktoren, die die Wirkung von Biomasse und Schnee beschreiben, modifiziert. Die Temperatur der verschiedenen Bodenhorizonte wird zwischen der Bodenoberflächentemperatur als obere Randbedingung und der langjährigen mittleren Temperatur als untere Randbedingung ermittelt. Hierbei wird die Dämpfungswirkung des Bodens unter Berücksichtigung der Bodenfeuchte und der Lagerungsdichte bestimmt. Die Gleichungen für die einzelnen Prozesse finden sich bei Neitsch et al. (2002).


Bild:Bodentemperaturmodul.jpg

Abbildung 1: Struktur des Bodentemperaturmoduls


Bild:Bodentemperaturtest.jpg

Abbildung 2: Ergebnisse der Bodentemperaturmodellierung für die Bodenoberfläche und in 40 cm Tiefe an einem Testhang bei Zeulenroda (Thüringen).


Die Abbildung zeigt die gemessene und modellierte Temperatur an der Bodenoberfläche (oberes Bild) sowie in 40 cm Tiefe (unteres Bild) für ein Testfeld in der nähe der Talsperre Zeulenroda. Es ist erkennbar, dass trotz gewisser Abweichungen der Temperaturverlauf gut nachvollzogen wird. Dies wird durch die hohen Bestimmtheitsmaße von rund 0.95 noch unterstrichen.


Pflanzenwachstumsmodul

Die Beschreibung zur Simulation des Pflanzenwachstums ist für eine Vielzahl von hydrologischen und Stofftransport-Prozessen wichtig, wie z.B. für die Interzeption oder die Stickstoffaufnahme durch den Pflanzenbestand. Das Pflanzenwachstum wird prinzipiell über die Simulation der Blattflächenentwicklung (LAI), der Lichtinterzeption und der Transformation in Biomasse gesteuert und erfolgt in Anlehnung an SWAT (Arnold et al. 1998). Dabei wird zunächst von einem potenziellen, d.h. unter optimalen Bedingungen vorliegenden, Pflanzenwachstum ausgegangen, welches unter Einbeziehung von Stressfaktoren modifiziert wird.


Temperaturentwicklung und Wärmesummen


Wichtigster Faktor für die Entwicklung des Pflanzenbestandes ist die Temperatur, deren Kennwerte für jede Pflanze unterschiedlich sind. Daher verfügt jede Pflanze über eine eigene Basistemperatur, die erreicht werden muss, um ein entsprechendes Wachstum auszulösen. Das Wachstum erhöht sich über die Optimumtemperatur bis es beim Überschreiten der Maximaltemperatur deutlich eingeschränkt wird. Der pflanzenspezifische Wachstumsverlauf erfolgt über die Generierung der Wärmesummen (‚heat units = HU’). Die zugrunde liegende Hypothese hierfür beruht auf der Annahme, dass Pflanzen einen spezifischen Wärmebedarf haben, der bis zum Erreichen des Erntezustands quantifizierbar ist. Eine ‚HU’ ist als eine phänologisch wirksame Temperatureinheit definiert. Sie ergibt sich aus der täglich akkumulierten Tagesdurchschnittstemperatur, die oberhalb der pflanzenspezifischen Basistemperatur liegt. Besitzt eine Maispflanze z.B. eine Basistemperatur von 7° C und unterliegt einer Tagestemperatur von 15° C, so ergeben sich für diesen Fall 15 – 7 = 8 HU's. Auf diese Weise werden, unter Bekanntgabe der Aussaat- und Erntezeitpunkte sowie der täglichen Mittelwertstemperaturen, die individuellen Wärmesummenentwicklungen für jede Landnutzungsart simuliert. Anhand der Wärmesummenentwicklung wird der Entwicklungsverlauf des Wurzelwachstums und des Blattflächenindex gesteuert. Hierbei wird vereinfachend davon ausgegangen, dass die Pflanzen zunächst ihre Enregie in die Blattentwicklung und das Wurzelwachstum investieren. Diese Vereinfachung bedeutet auch, dass die Entwicklung von Blättern und Wurzeln unabhängig von der Wasser- und Nährstoffversorgung simuliert wird. Weiterhin wird der Reifegrad der Pflanze, der den maximalen Stickstoffgehalt in der Biomasse beeinflusst, ausschließlich über die Temperatursumme gesteuert.


Biomasseentwicklung


Die Biomasseentwicklung selbst wird zunächst als potenzielle Biomasse simuliert. Steuernde Größe für die Biomasseentwicklung ist hierbei die photosyntetisch wirksame Strahlung. So wird für jeden Tag anhand der Strahlung und der Blattfläche ein potenzieller Biomassezuwachs ermittelt (vgl. Abbildung 1).


Pflanzenwastumsmodul1.jpg

Abbildung 1: Aufbau des Pflanzenwachstumsmoduls


Dieser tägliche Biomassezuwachs wird anhand von Stressfaktoren auf den aktuellen Biomassezuwachs reduziert. Die Stressfaktoren sind hierbei Stickstoffversorgung, Temperatur und Wasserversorgung (vgl. Abbildung 2).


Pflanzenwastumsmodul2.jpg

Abbildung 2: Aufbau des Wachstumsstresses


Der zu einem Punkt in Raum und Zeit am stärksten wirkende Stressfaktor bestimmt, nach dem Prinzip der limitierenden Faktoren, die aktuelle Biomasseentwicklung. Dies hat wiederum eine Rückwirkung auf den Stickstoffbedarf.


Landnutzungsmanagementmodul

Die Beschreibung des Landnutzungsmanagements erfolgt in Anlehnung an die Methodik im Modell SWAT (Arnold et al. 1998). Das Landnutzungsmanagementmodul realisiert die Möglichkeit komplexe Fruchtfolgen in J2k-S darzustellen. Ausgehend von Managementoperationen wie Aussaat, Düngung und Ernte werden einzele Feldfrüchte charakterisiert. Wie in Abbildung 1 dargestellt, bezieht sich die Fruchtfolge auf eine aktuelle Pflanze, die sich wiederum aus den Pflanzenparametern und den einzelnen Managementoptionen zusammensetzt.


Bild:Pflanzenmanagementmodul1.jpg

Abbildung 1: Funktionsschema des Landnutzungsmanagementmoduls


Die grundlegenden Bausteine (Basisobjekte) zur Beschreibung des Landnutzungsmanagements sind Bodenbearbeitung (bisher noch ohne Funktion), Düngung, Pflanzeneigenschaften und die Fruchtfolge selbst. Während die Managementoptionen Bodenbearbeitung und Düngung mit einfachen Parametern wie Durchmischungseffizienz, Bearbeitungstiefe, Düngemenge, Ammonium- und Nitratanteil auskommen, ist das Pflanzenobjekt mit zahlreichen Parametern versehen. Die Fruchtfolge ist dann nur noch eine einfache Liste mit der Reihenfolge der einzelnen Feldfrüchte (vgl. Abbildung 2).


Bild:Pflanzenmanagementmodul2.jpg

Abbildung 2: Grundlegenden Bausteine (Basisobjekte)


Zur Erläuterung ist in Abbildung 3 ein Ausschnitt einer Managementparameterdatei dargestellt. In der ersten Zeile findet sich eine Bodenbearbeitungsmaßnahme. Darauf folgt die Aussaat des im Beispiel verwendeten Maises. Es finden weiterhin 3 Düngemaßnahmen mit verschiedenen Düngern statt. Weiterhin ist die Ernte mit dem geernteten Anteil der Biomasse angegeben. Der Rest verbleibt auf dem Feld und wird dem Residuen-Pool im Bodenstickstoffmodul zugeführt. Zum Abschluss findet in diesem Beispiel noch eine Bodenbearbeitung statt.


Bild:Pflanzenwaschtumsmodul4.jpg


Abbildung 3: Aufbau einer Managementparameterdatei


Mit diesem Modul ist es möglich, die wesentlichen Tätigkeiten des pflanzenbaulichen Management flexibel abzubilden und Managementalternativen darzustellen.


Grundwasserstickstoffmodul

Die Beschreibung der Dynamik des Stickstoffes im Grundwasser wird in Anlehnung an die in J2k verwendete Grundwasserdynamik durchgeführt. Hierbei wird die Stofffracht entsprechend der Verteilung des Wassers auf die beiden Grundwasserspeicher RG1 und RG2 aufgeteilt. Es werden für beide Grundwasserspeicher getrennt die Wasser- und Stoffgehalte ermittelt. Die Abgabe erfolgt analog zum Wasser und den ermittelten Gehalten. Es ist möglich eine Anfangsstickstoffkonzentration vorzugeben.

Auserdem wurde noch ein Dämpfungsfaktor implementiert, der die Änderung der Stickstoffgehalte im Speicher verzögert. Dieser, zur Kalibration verwendbare Faktor, ist für beide Grundwasserspeicher getrennt einstellbar. Er repräsentiert Durchmischungs- und Diffusionseffekte im Grundwasserleiter.


Zurück zu Modelle

Personal tools