Hydrological Model J2000

From ILMS-Wiki
(Difference between revisions)
Jump to: navigation, search
(Spezielle Korrektur- und Berechnungsverfahren für die einzelnen Datensätze)
(Parameters)
 
(57 intermediate revisions by 8 users not shown)
Line 1: Line 1:
The hydrologic model system J2000 offers a physical-based modeling of the water balance of big catchment areas. In addition to the simulation of hydrologic processes, which influence the runoff and its concentration in the upper meso- and macro scale, the modeling system contains routines that help to regionalize the punctual available climate values and precipitation values quite safely. Furthermore, the calculation of the real evaporation, with which the calculation is carried out area-differentiated in consideration of the Verdunstungsverhalten of different land use classes, is integrated into the model. Since the model shall be suitable for the modeling of big catchment areas of more than 1000 km², it is ensured that the modeling can be carried out by means of the available base data on the national scale.  
+
[[de:Hydrologisches_Modell_J2000]]
 +
[[pt:Modelo_Hidrológico_J2000]]
 +
[[pl:Model_hydrologiczny_J2000]]
 +
The hydrologic model system J2000 offers a physical-based modeling of the water balance of big catchment areas. In addition to the simulation of hydrologic processes, which influence the runoff and its concentration in the upper meso- and macro scale, the modeling system contains routines that help to regionalize the punctual available climate values and precipitation values quite safely. Furthermore, the calculation of the real evaporation, with which the calculation is carried out area-differentiated in consideration of the evaporation patterns of different land use classes, is integrated into the model. Since the model shall be suitable for the modeling of big catchment areas of more than 1000 km², it is ensured that the modeling can be carried out by means of the available base data on the national scale.  
 
The simulation of the different hydrologic processes is carried out in program modules that are completed and as far as possible independent of each other. This offers to edit, substitute or add individual modules without the necessity to structure the entire model anew.  
 
The simulation of the different hydrologic processes is carried out in program modules that are completed and as far as possible independent of each other. This offers to edit, substitute or add individual modules without the necessity to structure the entire model anew.  
The modeled total runoff is build up on the sum of the individual runoff components that are separately calculated during the modeling. The modeling system differentiates between four runoff components according to their specific origin. The component with the highest temporal dynamics is the fast direct runoff (RD1). It consists of the runoff of sealed areas, of snow water, which drains within snow layers, and of surface runoff when saturation areas develop. The slow direct runoff component (RD2), which can be regarded as similar to the lateral hypodermic runoff within the soil zone, reacts insignificantly slower. Two further basis runoff components can be distinguished. On the one hand, there is the fast basis runoff component (RG1) which simulates the runoff from surface-near well permeable weathering zones. On the other hand, there is a slow basis runoff component (RG2) which results as runoff from joint aquifer or homogeneous loose rock aquifer. The allocation of the precipitation water to the individual runoff components is carried out in the model on the basis of area parameters which can be derived from the applied base data. In addition to the relief shape, specific soil parameters, like the hydraulic conductivity of individual soil horizons, have an important influence. The calculation of the runoff components’ different Konzentrationszeiten is carried out in consideration of the hydraulic characteristics of the storages in which the individual components drain. Additionally, variable influences like the Vorfeuchte of the area are considered while modeling.
+
The modeled total runoff is built up on the sum of the individual runoff components that are separately calculated during the modeling. The modeling system differentiates between four runoff components according to their specific origin. The component with the highest temporal dynamics is the fast direct runoff (RD1). It consists of the runoff of sealed areas, of snow water, which drains within snow layers, and of surface runoff when saturation areas develop. The slow direct runoff component (RD2), which can be regarded as similar to the lateral hypodermic runoff within the soil zone, reacts insignificantly slower. Two further basis runoff components can be distinguished. On the one hand, there is the fast basis runoff component (RG1) which simulates the runoff from surface-near well permeable weathering zones. On the other hand, there is a slow basis runoff component (RG2) which results as runoff from joint aquifer or homogeneous loose rock aquifer. The allocation of the precipitation water to the individual runoff components is carried out in the model on the basis of area parameters which can be derived from the applied base data. In addition to the relief shape, specific soil parameters, like the hydraulic conductivity of individual soil horizons, have an important influence. The calculation of the runoff components’ different concentration times is carried out in consideration of the hydraulic characteristics of the storages in which the individual components drain. Additionally, variable influences like the preceding soil moisture of the area are considered while modeling.
  
  
Line 7: Line 10:
 
=== GUI ===
 
=== GUI ===
  
After starting JAMS, the main window, which contains several tabulators, opens:  
+
After starting JAMS, the main window opens which contains several tabulators:  
  
'''Main'''
+
'''Basic Settings'''  
  
[[Bild:main.JPG|thumb|left]]
+
[[File:Main1_en.jpg]]
  
*Workspace directory: Sets up the working directory. It has to contain three further folders: parameter (for all parameter files), data (for all data files) and output (in which all output filed are written).
+
*Workspace directory: Sets the working directory. It has to contain three more folders: Parameter (for all parameter files), Data (for all data files) and Output (for all output files).
  
* Time interval: Here the time interval is selected for which the model shall be carried out.  
+
* Time interval: The time interval for the model run is selected.
  
* Caching: Here the results of some computationally intensive processes can be saved on the hard drive and can be used in further modeling runs. Thus, an insignificantly faster model run can be achieved. Warning: This feature is temporarily not completely safe and should only be applied by advanced users.
+
* Caching: The results of some compute-intensive processes can be temporarily stored in hard disk and reused for further model runs. Therefore the model run is slightly faster. Attention: This feature is not completely safe yet and should only be applied by experienced users.
  
+
'''Diagrams and Maps'''
  
 +
[[File:PlotsansMaps1_en.jpg]]
  
 +
*Runoff plot: Activates the graphical display of the runoff modeled and measured during model run.
  
 +
*Soil moisture plot: Activates the graphical display of the relative soil moisture during model run.
  
 +
*Snow water equivalent: Activates the graphical display of the snow water equivalent during model run.
  
 +
*Map enable: Enables the output of a cartographic display of selected state variables.
  
 +
*Map attributes: A semicolon-separated list of state variables which are to be cartographically displayed.
  
 +
*Map3D enable: Enables a 3D output of a cartographic display of selected state variables.
  
 +
*Map3D attributes: A semicolon-separated list of state variables which are to be cartographically displayed (in 3D).
  
 +
'''Initialising'''
  
 +
[[File:Initialisierung1_en.jpg]]
  
 +
*Multiplier for field capacity : The maximum storage capacity of the middle pore storages (MPS) can be increased (value > 1) or decreased (value < 1).
  
 +
*Multiplier for air capacity: The maximum storage capacity of the large pore storages (LPS) can be increased (value > 1) or decreased (value < 1).
  
'''Initializing'''
+
*initRG1: relative filling of the upper groundwater storage at beginning of model run (1 filled to capacity, 0 empty).
  
[[Bild:init.JPG|thumb|left]]
+
*initRG2: relative filling of the lower groundwater storage at beginning of model run (1 filled to capacity, 0 empty).
  
*Multiplier for field capacity : the maximum storage capacity of the middle pore storage (MPS) can be enlarged (value > 1) or reduced (value < 1). 
+
'''Regionalization'''
  
*Multiplier for air capicity: : the maximum storage capacity of the large pore storage (LPS) can be enlarged (value > 1) or reduced (value < 1).  
+
[[File:Regionalisierung3_en.jpg]]
  
*initRG1: relative filling of the upper ground-water reservoir when starting the model (1 completely filled, 0 empty).
+
*number of closest stations for regionalization: Number n of stations used to calculate the value of an HRU (n stations which are closest to the HRU are selected).
  
*initRG2: : relative filling of the lower ground-water reservoir when starting the model (1 completely filled, 0 empty).  
+
*Power of IDW function for regionalization: Weighting factor used to exponentiate the distance of each station to the respective HRU.
  
 +
*elevation correction on/off: Activates the elevation correction of the data values.
  
 +
*r-sqrt threshold for elevation correction: Threshold value for the elevation correction of the data values. If the coefficient of determination of the regression relation between measured data of the stations and station elevations is smaller than this value, an elevation correction is not carried out.
  
 +
Those settings (i.e. minimum temperature, maximum temperature, medium air temperature, precipitation, absolute air moisture, wind speed, sunshine duration) can be adjusted for every single input variable.
  
 +
'''Radiation'''
  
'''Plots&Maps'''
+
[[File:Radiation2_en.jpg]]
  
[[Bild:PlotsMaps.JPG|thumb|left]]
+
*flowRouteTA [h]: runtime of the outflow route
  
*Runoff plot: activates the plot of the non modeled and measured runoff during the model run.
+
'''Interception'''
  
*Soil moisture plot: activates the plot of the relative soil humidity during the model run.  
+
[[File:Interception_en.jpg]]
  
*Snow water equivalent: activates the plot of the snow water equivalent during the model run.
+
*a_rain [mm]: Maximum storage capacity of the interception storage per m<sup>2</sup> leaf area for rain
  
*Map enable: enables to generate a cartographic map of selected status variables.
+
*a_snow [mm]: Maximum storage capacity of the interception storage per m<sup>2</sup> leaf area for snow
  
*Map attributes: list of the status variables that shall be represented, separated by semicolon.
+
'''Snow'''
  
*Map3D enable: enables to generate 3D output of a cartographic map of selected status variables.  
+
[[File:Schnee_en.jpg]]
  
*Map3D attributes: list of the status variables that shall be represented, separated by semicolon.  
+
*Component active: Activates the snow module.
  
 +
*baseTemp [°C]: Temperature limit value for snow precipitation.
  
'''Regionalization'''
+
*t_factor [mm/°C]: Temperature factor for calculation of snowmelt runoff.
  
[[Bild:regionalisation.JPG|thumb|left]]
+
*r_factor [mm/°C]: Rain factor for calculation of snowmelt runoff.
  
*number of closest stations for regionalisation: number n of stations that are used for the calculation of the data values of an HRU (then, the n stations that are nearest to the particular HRU are chosen)
+
*g_factor [mm]: Soil heat flux factor for calculation of snowmelt runoff.
  
*Power of IDW function for regionalisation: weighting factor with which the distance of each station to the particular HRU is exponentiated.
+
*snowCritDens [g/cm³]: critical snow density
  
*elevation correction on/off: activates the elevation correction of the data values.
+
*ccf_factor [-]: factor for calculation of the cold content of snow cover
  
*r-sqrt threshold for elevation correction: threshold for the elevation correction of the data values. If the coefficient of determination of the regression relationship between the station values and the elevations of the station less than this value, no elevation correction is carried out.
+
'''Soilwater'''
  
These settings can be determined for each input variable (i.e. minimum temperature, maximum temperature, mean air temperature, precipitation, absolute humidity, air temperature, sunshine duration) individually.  
+
[[File:Boderwasser1_en.jpg]]
  
 +
*MaxDPS [mm]: maximum hollow reserve
  
 +
*PolRed [-]: polynomial reduction factor for reduction of potential evaporation with limited water supply.
  
 +
*LinRed [-]: linear reduction factor for reduction of potential evaporation with limited water supply.
  
 +
(Note: PolRed and LinRed do not represent alternatives. Only one can be attributed a value, the other one has to be 0.)
  
 +
*MaxInfSummer [mm]: maximum infiltration during summer period
  
'''Radiation'''
+
*MaxInfWinter [mm]: maximum infiltration during winter period
  
[[Bild:radiation.JPG|thumb|left]]
+
*MaxInfSnow [mm]: maximum infiltration with snow cover
  
*Longitude of time zone center [dec.deg]: longitude to which the time zone of the test series refers. For CET it is 15° east, for example.
+
*ImpGT80 [-]: relative infiltration capacity of areas with a sealing degree of > 80%
  
*East or west of Greenwich [e|w]: is the area placed east (e) or west (w) of Greenwich.
+
*ImpLT80 [-]: relative infiltration capacity of areas with a sealing degree of < 80%
  
*daily or hourly time steps [d|h]: radiation calculation for daily (d) or hourly (h) modeling.
+
*DistMPSLPS [-]: calibration coefficient for distribution of infiltration on soil storages LPS and MPS
  
*Parameter a for Angstroem formula [-]: Default value 0.25 (Note: The sum of a and b must not be more than 1). D
+
*DiffMPSLPS [-]: calibration coefficient for the definition of the diffusion amount of the LPS storage in relation to MPS at the end of a time step
  
*Parameter b for Angstroem formula [-]: Default value 0.5 (Note: The sum of a and b must not be more than 1).
+
*OutLPS [-]: calibration coefficient for definition of LPS outflow
  
 +
*LatVertLPS [-]: calibration coefficient for distribution of the LPS outflow on the lateral (interflow) and vertical (percolation) component
  
 +
*MaxPerc [mm]: maximum percolation rate
  
 +
*ConcRD1 [-]: retention coefficient for direct runoff
  
'''Interception'''
+
*ConcRD2 [-]: retention coefficient for interflow
  
[[Bild:intercept.JPG|thumb|left]]
+
'''Groundwater'''
  
*a_rain [mm]: maximum storage capacity of the interception storage per m² of leaf area for rain
+
[[File:Grundwasser_en.jpg]]
*a_snow [mm]: maximum storage capacity of the interception storage per m² of leaf area for snow
+
  
 +
*RG1RG2dist [-]: calibration coefficient for distribution of percolation water
  
 +
*RG1Fact [-]: factor for runoff dynamics of RG1
  
 +
*RG2Fact [-]: factor for runoff dynamics of RG2
  
 +
*CapRise [-]: factor for the setting of capillary rise
  
 +
'''Routing in the Flow'''
  
 +
[[File:Reachrouting_en.jpg]]
  
 +
*flowRouteTA [h]: runtime of the outflow route
  
'''SoilWater'''
 
  
[[Bild:soil.JPG|thumb|left]]
 
  
*MaxDPS [mm]: maximum Muldenrückhalt
 
*PolRed [-]: polynomial reduction factor for the reduction of the potential evaporation for limited water supply.
 
*LinRed [-]: linear reduction factor for the reduction of the potential evaporation for limited water supply.
 
(Note: PolRed or LinRed are alternatives. Only one of them can take a value, the other one needs to be set up on 0, then.)
 
*MaxInfSummer [mm]: maximum infiltration in the summer half year
 
*MaxInfWinter [mm]: maximum infiltration in the winter half year
 
*MaxInfSnow [mm]: maximum infiltration when snow cover occurs
 
*ImpGT80 [-]: relative infiltration capacity of areas with a sealed grade > 80%
 
*ImpLT80 [-]: relative infiltration capacity of areas with a sealed grade < 80%
 
*DistMPSLPS [-]: calibration coefficient for the allocation of the infiltration to the soil storage LPS and MPS
 
*DiffMPSLPS [-]: calibration coefficient for the definition of the diffusion amount of the LPS storage contents according to the MPS at the end of the time interval
 
*OutLPS [-]: calibration coefficient for the definition of the LPS runoff
 
*LatVertLPS [-]: calibration coefficient for the allocation of the LPS runoff to the lateral (interflow) and vertical (percolation) component.
 
*MaxPerc [mm]: maximum percolation rate
 
*ConcRD1 [-]: retention coefficient for the direct runoff
 
*ConcRD2 [-]: retention coefficient for the interflow
 
  
  
  
'''Snow'''
 
  
[[Bild:snow.JPG|thumb|left]]
 
  
*Component active: activates the snow module.
 
*baseTemp [°C]: temperature threshold for snow precipitation.
 
*t_factor [mm/°C]: temperature factor for the calculation of the snow melt runoff
 
*r_factor [mm/°C]: rain factor for the calculation of the snow melt runoff
 
*g_factor [mm]: factor of the soil heat flux for the calculation of the snow melt runoff
 
*snowCritDens [g/cm³]: critical snow density
 
*ccf_factor [-]: factor for the determination of the cold content of the snow cover
 
  
 +
When all parameters are set, the modeling is initiated via the button '''[Run]'''. A window opens which contains different tabulators.
  
 
'''Ground Water'''
 
 
[[Bild:groundwater.JPG|thumb|left]]
 
 
*RG1RG2dist [-]: calibration coefficient for the allocation of the percolation water
 
*RG1Fact [-]: factor for the runoff dynamic of the RG1
 
*RG2Fact [-]:factor for the runoff dynamic of the RG2
 
*CapRise [-]: factor for the setting of the capillary ascension
 
 
 
 
 
 
'''ReachRouting'''
 
 
[[Bild:reachrouting.JPG|thumb|left]]
 
 
*flowRouteTA [h]: runtime of the discharge wave
 
 
 
 
 
 
When all parameters are set, the modeling is initiated via the button '''[Run]'''. A window opens which contains different tabulators.
 
 
The tab [JAMSProgress] represents general information about the current model run in text form. If an error or problem occurs during the implementation, an error message possibly appears in this view. Furthermore, different efficiency criteria are given after the completion of the model run. These are:  
 
The tab [JAMSProgress] represents general information about the current model run in text form. If an error or problem occurs during the implementation, an error message possibly appears in this view. Furthermore, different efficiency criteria are given after the completion of the model run. These are:  
  
Line 199: Line 182:
 
''wr<sup>2</sup>'' ... coefficient of determination, weighted with the slope of the regression line  
 
''wr<sup>2</sup>'' ... coefficient of determination, weighted with the slope of the regression line  
  
''dsGrad'' ... Doppelsummengradient
+
''dsGrad'' ... double sum gradient
  
 
''AVE'' ... absolute volume error  
 
''AVE'' ... absolute volume error  
Line 205: Line 188:
 
''RSME'' ... root mean square error  
 
''RSME'' ... root mean square error  
  
''pbias'' ... relative percental volume error  
+
''pbias'' ... relative percentage volume error  
  
 
The further tabs contain the plots and maps selected beforehand.  
 
The further tabs contain the plots and maps selected beforehand.  
Line 211: Line 194:
  
  
---
+
----
  
 
=== Input files ===
 
=== Input files ===
Line 298: Line 281:
 
|}
 
|}
  
====Parameter====
+
====Parameters====
  
 
J2000 expects the following parameter files for the model initialization:  
 
J2000 expects the following parameter files for the model initialization:  
Line 307: Line 290:
 
*hrus.par – parameter of the derived Hydrological Response Units (HRUs)
 
*hrus.par – parameter of the derived Hydrological Response Units (HRUs)
  
Generally, all parameter files have the following structure (demonstrated here for the example of the net of water course; see also the figure on the right):
 
  
[[Bild:Bsp_Param.jpg|thumb|right|Sample of a parameter file]]
+
Generally, all parameter files have the following structure (demonstrated here for the example of the net of water course; see also the figure on the right):
 +
[[File:Bsp_Param.jpg|thumb|right|Sample of a parameter file]]
  
 
{| style="text-align:left;"
 
{| style="text-align:left;"
Line 340: Line 323:
 
|albedo || albedo in %
 
|albedo || albedo in %
 
|-
 
|-
|RSC0_1 || minimum surface resistance for water-saturated soil in January  
+
|RSC0_1 || minimum surface resistance under water-saturated conditions in January  
 
|-
 
|-
 
|...
 
|...
 
|-
 
|-
|RSC0_12 || minimum surface resistance for water-saturated soil in December
+
|RSC0_12 || minimum surface resistance under water-saturated conditions in December
 
|-
 
|-
 
|LAI_d1 || leaf area index (LAI) at the beginning of the vegetation period  
 
|LAI_d1 || leaf area index (LAI) at the beginning of the vegetation period  
Line 356: Line 339:
 
|...
 
|...
 
|-
 
|-
|effHeight_d4 || effective vegetation height at the endof the vegetation period  
+
|effHeight_d4 || effective vegetation height at the end of the vegetation period  
 
|-
 
|-
|rootDepth || rooth depth
+
|rootDepth || root depth
 
|-
 
|-
 
|sealedGrade || sealed grade
 
|sealedGrade || sealed grade
Line 371: Line 354:
 
|GID || hydrogeology ID
 
|GID || hydrogeology ID
 
|-
 
|-
|RG1_max || maximum storage capacity of the upper ground-water reservoir maximale
+
|RG1_max || maximum storage capacity of the upper ground-water reservoir  
 
|-
 
|-
 
|RG2_max || maximum storage capacity of the lower ground-water reservoir  
 
|RG2_max || maximum storage capacity of the lower ground-water reservoir  
Line 389: Line 372:
 
|ID || channel part ID
 
|ID || channel part ID
 
|-
 
|-
|length || lenght
+
|length || length
 
|-
 
|-
 
|to-reach || ID of the underlying channel part
 
|to-reach || ID of the underlying channel part
Line 417: Line 400:
 
|kf_max || maximum permeability coefficient  
 
|kf_max || maximum permeability coefficient  
 
|-  
 
|-  
|cap_rise || boolean variable, that allows (1) or restricts (0) capillary ascension  
+
|cap_rise || Boolean variable, that allows (1) or restricts (0) capillary ascension  
 
|-
 
|-
 
|aircap || air capacity
 
|aircap || air capacity
Line 439: Line 422:
 
|x || easting of the centroid point  
 
|x || easting of the centroid point  
 
|-
 
|-
|y || northing of the centroid point Hochwert des Flächenschwerpunktes
+
|y || northing of the centroid point  
 
|-
 
|-
 
|elevation || mean elevation
 
|elevation || mean elevation
Line 464: Line 447:
 
|-
 
|-
 
|}
 
|}
 
 
 
----
 
  
 
=== Regionalization of Climate and Precipitation Data ===
 
=== Regionalization of Climate and Precipitation Data ===
Line 480: Line 459:
  
  
The unknown aH a<sub>H</sub> and bH b<sub>H</sub> are defined according to the Gaussian method of the smallest squares:  
+
The unknown a<sub>H</sub> and b<sub>H</sub> are defined according to the Gaussian method of the smallest squares:  
  
  
Line 515: Line 494:
  
  
'''3.''' Via an '''Inverse-Distance-Weighted Verfahren (IDW)''' the weightings of the n stations are defined dependently on their distances for each HRU. Via the IDW-method the horizontal variability of the station data is taken into account according to its spatial position. The calculation is carried out according to the following equation:  
+
'''3.''' Via an '''Inverse-Distance-Weighted (IDW)''' the weightings of the n stations are defined dependently on their distances for each HRU. Via the IDW-method the horizontal variability of the station data is taken into account according to its spatial position. The calculation is carried out according to the following equation:  
  
  
Line 546: Line 525:
  
 
The correction of the moistening error and evaporation error is carried out according to researches with the help of Hellmann-rainfall gauges by RICHTER (1995). In order to offer a constant correction of the error (which results from the moistening and evaporation loss), logarithmic functions were approximated separately for the summer half year (May-October) and winter half year (November-April) to the discrete tabulated values in the modeling system 2000. If the precipitation height goes beyond the value of 9 mm the moistening error and evaporation error is set to a constant value.  
 
The correction of the moistening error and evaporation error is carried out according to researches with the help of Hellmann-rainfall gauges by RICHTER (1995). In order to offer a constant correction of the error (which results from the moistening and evaporation loss), logarithmic functions were approximated separately for the summer half year (May-October) and winter half year (November-April) to the discrete tabulated values in the modeling system 2000. If the precipitation height goes beyond the value of 9 mm the moistening error and evaporation error is set to a constant value.  
Für Niederschlagshöhen &le;9.0 mm berechnet sich der Benetzungs- und Verdunstungsfehler nach:
+
 
 +
The moistening error and evaporation error for precipitation heights ≤9.0 mm is calculated according to the following equates:  
  
 
<math>  
 
<math>  
Line 557: Line 537:
  
  
Für Niederschlagshöhen >9.0 mm beträgt der Benetzungs- und Verdunstungsfehler:
+
For precipitation heights >9.0 mm the moistening and evaporation error is:  
  
 
<math>  
 
<math>  
Line 568: Line 548:
  
  
'''''Korrektur des Windfehlers'''''
+
'''''Correction of the Wind Error'''''
  
Die Quantifizierung des zu erwartenden Niederschlagsfehlers erfolgt nach Untersuchnungen von RICHTER (1995)
+
The quantification of the precipitation error that is to be expected is carried out according to the researches by RICHTER (1995) as function of the precipitation height and the position of the station. It is assumed that the relative wind error (KR<sub>Wind</sub>) for rainfall as well as snowfall behaves inversely proportional to the precipitation heights (Pm). The calculation is carried out according to the following equations:  
als Funktion der Niederschlagshöhe und der Stationslage. Es wird angenommen, dass sich der relative Windfehler (KR<sub>Wind</sub>)
+
für sowohl Regen- als auch Schneeniederschläge deutlich umgekehrt proportional zu den Niederschlagshöhen (P<sub>m</sub>)
+
verhält. Die Berechnung erfolgt nach folgenden Gleichungen:
+
  
 
<math>
 
<math>
Line 585: Line 562:
  
  
Die Berechnung der um Verdunstungs- und Windfehler korrigierten Niederschlagshöhe erfolgt
+
The calculation of the precipitation heights corrected for evaporation error and wind error is then carried out according to the following equation:  
schließlich nach:
+
  
  
Line 594: Line 570:
  
  
'''Temperatur'''
+
'''Temperature'''
  
Das Modellsystem J2000 benötigt Messwerte der Tagesmaximum- und der
+
The modeling system J2000 requires values of the day minimum temperature as well as the day maximum temperature. From these values the mean day temperature (T<sub>mean</sub>) is calculated as mean average.  
Tagesminimumtemperatur. Aus diesen Werten wird die mittlere
+
Tagestemperatur (T<sub>mean</sub>) als einfaches arithmetisches Mittel
+
berechnet.
+
  
Die Regionalisierung der punktuellen Messwerte
+
The regionalization of the punctual values T<sub>min</sub>,T<sub>max</sub> and T<sub>mean</sub> is carried out according to the rule described above with optional elevation correction.
T<sub>min</sub>,T<sub>max</sub> und T<sub>mean</sub> erfolgt nach der oben
+
beschriebenen Vorschrift mit optionaler Höhenkorrektur.
+
  
  
  
'''Windgeschwindigkeit'''
 
  
Die Windgeschwindigkeit wird vom DWD nicht direkt als Messwert,
+
'''Wind Speed'''
sondern als Windstärkebeobachtungen (WS) in
+
 
Beaufort zur Verfügung gestellt. Die Umrechnung der Windstärke in
+
The wind speed is not given as direct value from the DWD but as wind force observations (WS) in Beaufort. The conversion of the wind force into the wind speed at 2 m height (v<sub>2</sub>) [in ms<sup>-1</sup>] can be carried out according to the following equation:
die Windgeschwindigkeit in 2 m Höhe (v<sub>2</sub>) [in ms<sup>-1</sup>]
+
 
kann mittels folgender Beziehung durchgeführt werden:
+
  
 
<math>
 
<math>
Line 620: Line 589:
  
  
Diese Umrechnung muss außerhalb des Modellsystems erfolgen, da das
+
This conversion needs to be carried out externally, because J2000 expects the wind speed in m/s.  
J2000 die Windgeschwindigkeit in Meter pro Sekunde erwartet.
+
 
 +
The conversion of the wind speed at 2 m height to other heights – as it is partly required during the evaporation calculation and the wind correction of the precipitation – is carried out during the modeling according to the following equation:
  
Die Umrechnung der Windgeschwindigkeit in 2 m Höhe auf andere
 
Höhen, wie sie teilweise während der Verdunstungsberechnung und
 
der Windkorrektur der Niederschläge benötigt wird, erfolgt während
 
der Modellierung nach der Gleichung:
 
  
 
<math>
 
<math>
Line 633: Line 599:
  
  
Bei der Interpolation der punktuellen Messwerte auf die Fläche,
+
The interpolation of the punctual values to the area is carried out according to the method described above. The modeling system allows the inclusion of the optional elevation correction for the regionalization of the wind speed. However, this option should be handled with care, since the wind speed is very dependent on the station’s position.  
wird nach dem oben beschriebenen Verfahren vorgegangen. Das
+
Modellsystem erlaubt den Einbezug der optionalen
+
Höhenkorrektur zur Regionalisierung der
+
Windgeschwindigkeit. Diese Option sollte allerdings mit Vorsicht
+
eingesetzt werden, da die Windgeschwindigkeit in hohem Mass von der
+
Stationslage abhängig ist.
+
  
  
'''Sonnenscheindauer'''
+
'''Sunshine Duration'''
  
Die tägliche Sonnenscheindauer (S) [in h], wird vom DWD als
+
The daily sunshine duration (S) [in h], is provided as value by the DWD. The interpolation of the station values to the area is carried out according to the procedure described above – without additional calculations or elevation corrections.
Messwert zur Verfügung gestellt. Die Interpolation der
+
Stationswerte auf die Fläche erfolgt nach dem oben beschriebenen
+
Verfahren, ohne zusätzliche Berechnungen oder Höhenkorrekturen.
+
  
  
'''Relative Feuchte'''
+
'''Relative Humidity'''
  
Die relative Feuchte (U) [in %] kann vom DWD in Form von
+
The relative humidity (U) [in %] can be taken from the DWD as daily values. A direct regionalization of the values is not recommended since they depend on two parameters: the absolute moisture content and the maximum possible moisture content of the air for a particular temperature. Thus, in the J2000 modeling system’s regionalization module the absolute humidity (a) [in g cm<sup>-3</sup>] is calculated from the relative humidity and the temperature at the station. It is then regionalized and afterwards the absolute humidity is converted to the relative humidity, again. For this purpose, several calculation steps are necessary which are shown below.  
Tageswerten bezogen werden. Da sie von zwei Parametern abhängt,
+
dem absoluten Feuchtegehalt und dem maximal möglichen
+
Feuchtegehalt der Luft bei einer bestimmten Temperatur, ist eine
+
direkte Regionalisierung der Messwerte nicht ratsam. Im
+
Regionalisierungsmodul des Modellsystem J2000 wird daher aus der
+
relativen Feuchte und der Temperatur an der Station zuerst die
+
absolute Feuchte (a) [in g cm<sup>-3</sup>] berechnet. Diese wird
+
dann regionalisiert und danach wieder in die relative Feuchte
+
zurückgerechnet. Hierfür sind mehrere Berechnungsschritte
+
notwendig, die im Folgenden dargestellt werden.
+
  
  
''Berechnung des Sättigungsdampfdrucks''
+
''Calculation of the Saturation Vapor Pressure''
  
Der Sättigungsdampfdruck (e<sub>s</sub>(T)) [in hPa] erfolgt nach der
+
The saturation vapor pressure (e<sub>s</sub>(T)) [in hPa] is calculated according to the Magnus formula with the coefficients by SONNTAG (1994) for the air temperature (T) [in °C]:  
Magnus-Formel mit den Koeffizienten von SONNTAG (1994) für
+
die Lufttemperatur (T) [in °C]:
+
  
 
<math>  
 
<math>  
Line 677: Line 622:
  
  
''Berechnung der maximalen Feuchte''
+
''Calculation of the Maximum Humidity''
 +
 
 +
The maximum humidity (A) is calculated against the saturation vapor pressure (e<sub>s</sub>(T)) and the air temperature (T) according to:
  
In Abhängigkeit vom Sättigungsdampfdruck (e<sub>s</sub>(T)) und der
 
Lufttemperatur (T) berechnet sich die maximale Feuchte (A)
 
nach:
 
  
 
<math>  
 
<math>  
Line 689: Line 633:
  
  
''Berechnung der absoluten Feuchte''
+
''Calculation of the Absolute Humidity''
  
Der tatsächliche Wassergehalt der Luft, die absolute Feuchte (a)
+
The real water content of the air, the absolute humidity (a) [in gcm<sup>-3</sup>], results from the maximum humidity (A)[in gcm<sup>-3</sup>] and the relative humidity (U) [in %]:  
[in gcm<sup>-3</sup>], ergibt sich aus der maximalen
+
Feuchte (A) [in gcm<sup>-3</sup>] und der relativen Feuchte (U)
+
[in %] :
+
  
 
<math>
 
<math>
Line 702: Line 644:
  
  
Die so berechneten Stationswerte der absoluten Feuchte werden nun
+
The so calculated station values of the absolute humidity are then regionalized according to the procedure described above and are converted into relative humidity afterwards. The advantage of this rather complex regionalization method is that, in addition to its higher physical relation, the absolute humidity is more dependent on heights than the relative humidity. Thus, the elevation effect can be used for the regionalization according to the procedure described above. After the regionalization of the absolute humidity, the conversion into relative humidity can be carried out. However, instead of the temperature of the station, the previously regionalized average air temperature T<sub>mean</sub> of the corresponding discrete sub-area is set.  
nach dem oben beschriebenen Verfahren regionalisiert und danach
+
 
wieder in die relative Feuchte zurückgerechnet. Der Vorteil dieser
+
etwas aufwendigeren Regionalisierungsmethode liegt, neben ihrem
+
höheren physikalischen Bezug, in der Tatsache begründet, dass die
+
absolute Feuchte im Gegensatz zur relativen Feuchte eine deutliche
+
Höhenabhängigkeit aufweist. Folglich kann der Höheneffekt durch
+
das oben beschriebene Verfahren für die Regionalisierung genutzt
+
werden.
+
Nach der Regionalisierung der absoluten Feuchte erfolgt die
+
Rückrechnung in die relative Feuchte. Anstelle der
+
Temperatur der Station wird aber die zuvor regionalisierte
+
mittlere Lufttemperatur (T<sub>mean</sub>) der entsprechenden diskreten
+
Teilfläche gesetzt.
+
  
  
 
----
 
----
  
=== Evapotranspirationsberechnung ===
+
=== Calculation of Evapotranspiration ===
  
  
Die Berechnung der Bestandverdunstung erfolgt in J2000 nach der Penman-Monteith Gleichung in mehreren Schritten unter Einbeziehung
+
The calculation of the Bestandverdunstung is carried out in J2000 according to the Penman-Monteith equation in several steps in regard to numerous parameters. Since the calculation is very complex and time-consuming, it was sourced out into the preprocessing part of the modeling system. This outsourcing is possible because most of the parameters that are used for the calculation are derived from the input data and are thus seen as independent of the modeled dynamic of the water supply. The only parameter that is used in the calculation but can only be defined during the modeling is the current soil moisture. Its reducing influence is taken into account via appropriate reduction functions during the modeling. Two evaporation values are generated for each time interval (1 day) during the calculation of the evaporation. These values are a day value (index d) and a night value (index n). This distinction is necessary because the net radiation balance is very different at day or night. Furthermore, the evaporation behavior of the vegetation is different at day or night. In the night the plants’ stomata are closed, the surface resistance is unequally higher than at daytime. The calculation for the day and for the night is carried out according to the following equations, whereby the total value of the evaporation for the particular time step results as sum of these two values.  
einer Vielzahl von Parametern. Dadurch wird die Berechnung sehr aufwendig und damit zeitintensiv, weshalb sie in den Preprocessing
+
Bereich des Modellsystems ausgelagert wurde. Dies ist möglich, da die meisten Parameter, die in die Berechnung eingehen, aus den
+
Eingangsdaten abgeleitet werden und dadurch als unabhängig von der modellierten Dynamik des Wasserhaushaltes betrachtet werden
+
können. Der einzige Parameter, der in die Berechnung eingeht und erst während der Modellierung bestimmt werden kann, ist die aktuelle
+
Bodenfeuchte. Deren reduzierender Einfluß wird während der Modellierung durch geeignete Reduktionsfunktionen berücksichtigt.
+
Während der Verdunstungsberechnung werden für jeden Zeitschritt (1Tag) zwei Verdunstungswerte ermittelt. Nämlich ein Tages- (Index
+
d) und ein Nachtwert (Index n). Diese Unterscheidung ist notwendig, da sich die Strahlungsbilanz signifikant tags und
+
nachts unterscheidet. Außerdem ist das Verdunstungsverhalten der
+
Vegetation tags und nachts unterschiedlich, da nachts die Stomata der Pflanzen geschlossen sind, wodurch der Oberflächenwiderstand
+
ungleich höher ist als tagsüber. Die Berechnung für den Tag und für die Nacht erfolgt nach folgenden Gleichungen, wobei sich der Gesamtwert der Verdunstung für den jeweiligen Zeitschritt dann als Summe dieser beiden Werte ergibt.
+
  
  
Line 742: Line 662:
  
  
mit:
+
with:
  
L<sub>d,n</sub> ... Latente Verdunstungswärme [Wm<sup>-2</sup>] pro [mmd<sup>-1</sup>]
+
L<sub>d,n</sub> ... latent heat of evaporation [Wm<sup>-2</sup>] per [mmd<sup>-1</sup>]
  
s<sub>d,n</sub> ... Steigung der Dampfdruckkurve [hPaK<sup>-1</sup>]
+
s<sub>d,n</sub> ... slope of the vapor pressure curve [hPaK<sup>-1</sup>]
  
R<sub>N <sub>d,n</sub> </sub> ... Nettostrahlung [Wm<sup>-2</sup>]
+
R<sub>N <sub>d,n</sub> </sub> ... net radiation [Wm<sup>-2</sup>]
  
G<sub>d,n</sub> ... Bodenwärmestrom [Wm<sup>-2</sup>]
+
G<sub>d,n</sub> ... soil heat flux [Wm<sup>-2</sup>]
  
&rho; ... Dichte der Luft [kgm<sup>-3</sup>]
+
&rho; ... density of the air [kgm<sup>-3</sup>]
  
c<sub>p</sub> ... Spezifische Wärmekapazität der
+
c<sub>p</sub> ... specific heat capacity of the air for constant pressure [Jkg<sup>-1</sup>K<sup>-1</sup>]
der Luft bei konstantem Druck [Jkg<sup>-1</sup>K<sup>-1</sup>]
+
  
e<sub>s<sub>d,n</sub> </sub> ... Sättigungsdampfdruck [hPa]
+
e<sub>s<sub>d,n</sub> </sub> ... saturation vapor pressure [hPa]
  
e<sub>d,n</sub> ... Dampfdruck [hPa]
+
e<sub>d,n</sub> ... vapor pressure [hPa]
  
r<sub>a</sub> ... Aerodynamischer Widerstand
+
r<sub>a</sub> ... aerodynamic resistance of the land cover [sm<sup>-1</sup>]
der Bodenbedeckung [sm<sup>-1</sup>]
+
  
&gamma; <sub>d,n</sub> ... Psychrometerkonstante [hPaK<sup>-1</sup>]
+
&gamma; <sub>d,n</sub> ... psychrometer constant [hPaK<sup>-1</sup>]
  
r<sub>s<sub>d,n</sub> </sub> ... Oberflächenwiderstand der
+
r<sub>s<sub>d,n</sub> </sub> ... surface resistance of the land cover [sm<sup>-1</sup>]
Bodenbeckung [sm<sup>-1</sup>]
+
  
S<sub>0</sub> ... Astronomisch mögliche
+
S<sub>0</sub> ... astronomic possible sunshine duration [h]
Sonnenscheindauer [h]
+
  
  
Die '''Lufttemperaturen''' (T<sub>d</sub> und T<sub>n</sub>), die für die Berechnung der Strahlungsbilanz nötig werden, werden aus den Messwerten der Minimum-
+
The '''air temperatures''' (T<sub>d</sub> e T<sub>n</sub>), which become necessary for the calculation of the net radiation balance, are derived from the values of the minimum temperature and maximum temperature as well as from the daily mean value:  
und Maximumtemperaturen und dem Tagesmittelwert abgeleitet:
+
  
  
Line 783: Line 698:
  
  
Die '''latente Verdunstungswärme''' (L) berechnet sich näherungsweise nach:
+
The '''latent heat of evaporation''' (L) is calculated approximately according to:
 
+
  
 
<math>L_d = 28.9 - 0.028 \cdot{T_d}</math>  
 
<math>L_d = 28.9 - 0.028 \cdot{T_d}</math>  
Line 791: Line 705:
  
  
Der '''Sättigungsdampfdruck''' (e<sub>s</sub>(T)) der Luft bei der Temperatur (T) wird nach der Magnus-Formel mit den Koeffizienten nach Sonntag
+
The '''saturation vapor pressure''' (e<sub>s</sub>(T)) of the air for the temperature (T) is calculated according to the Magnus formula with the coefficients by Sonntag:  
berechnet:
+
  
  
Line 801: Line 714:
  
  
Der '''tatsächliche Dampfdruck''' (e) ergibt sich aus dem Sättigungsdampfdruck und der relativen Luftfeuchte (U in [%]) nach:
+
The '''real vapor pressure''' (e) results from the saturation vapor pressure and the relative air humidity (U in [%]):
  
  
Line 810: Line 723:
  
  
Aus dem Sättigungsdampfdruck (e<sub>s</sub>(T)) und der Lufttemperatur (T) berechnet sich die '''Steigung der Sättigungsdampfdruckkurve''' (s) nach
+
The '''slope of the saturation vapor pressure curve''' (s) calculated from the saturation vapor pressure (e<sub>s</sub>(T)) and the air temperature (T):
  
  
Line 818: Line 731:
  
  
Der '''Luftdruck''' (p) in der Höhe (z) wird aus der umgestellten barometrischen Höhenformel ermittelt:
+
The '''air pressure''' (p) at the height (z) is generated from the adapted barometric formula:
  
  
Line 827: Line 740:
  
  
mit:
+
with:
  
p<sub>0</sub> ... Luftdruck auf Meeresniveau (= 1013) [hPa]
+
p<sub>0</sub> ... air pressure at sea level (= 1013) [hPa]
  
g ... Erdbeschleunigung (= 9.811) [ms<sup>-1</sup>]
+
g ... gravitational acceleration (= 9.811) [ms<sup>-1</sup>]
  
R ... Gaskonstante (= 8314.3) [Jkmol<sup>-1</sup>K<sup>-1</sup>]
+
R ... universal gas constant (= 8314.3) [Jkmol<sup>-1</sup>K<sup>-1</sup>]
  
Tabs ... absolute Lufttemperatur [K]
+
Tabs ... absolute air temperature [K]
  
  
Die '''Psychrometerkonstante''' (&gamma;) ergibt sich nach:
+
The '''psychrometer constant''' (&gamma;) results from:
  
  
Line 846: Line 759:
  
  
wobei 0.6322 das Verhältnis der Molgewichte von Wasserdampf und trockener Luft ist.
+
whereby 0.6322 is the relation of the molar weight of water vapor and dry air.  
  
  
'''Berechnung der Strahlungsbilanz'''
+
'''Calculation of the Net Radiation Balance'''
  
Die Energie, die für die Verdunstung benötigt wird, wird durch die Strahlung bereitgestellt. Zur Berechnung der Energiemenge,
+
The energy that is necessary for the evaporation is provided by radiation. The net radiation balance for each day needs to be defined for the calculation of the amount of energy that results from the energy balance segments. The energy fluxes that add to the net radiation balance are: the extraterrestrial radiation, the global radiation, the atmospheric backradiation, the longwave radiation as well as the soil heat flux.  
die aus den einzelnen Energiebilanzgliedern resultiert, muss die Strahlungsbilanz für jeden Tag bestimmt werden.
+
Die Energieströme, die zur Strahlungsbilanz beitragen, sind: die extraterrestrische Einstrahlung, die Globalstrahlung,
+
die atmosphärische Gegenstrahlung, die langwellige Ausstrahlung sowie der Bodenwärmestrom.  
+
  
Die '''extraterrestrische Strahlung''' (R<sub>0</sub>) berechnet sich in Abhängigkeit von der geographischen Breite und dem Jahresgang des
+
The '''extraterrestrial radiation''' (R<sub>0</sub>) is calculated against the latitude as well as the annual variation of the insolation angle of the sun (declination):  
Einstrahlungswinkels (Deklination) der Sonne nach:
+
  
  
Line 863: Line 772:
  
  
mit dem Winkel ''&zeta;'' und dem Faktor (1/8.64) zur Umrechnung von Jcm<sup>-2</sup> auf Wm<sup>-2</sup>, sowie der geographischen Breite &phi; in Grad.
+
with the angle ''&zeta;'' and the factor (1/8.64) for the conversion of Jcm<sup>-2</sup> to Wm<sup>-2</sup>, as well as from latitude &phi; to degree.  
  
Die '''Globalstrahlung''' (R<sub>G</sub>) wird aus der extraterrestrischen Strahlung R<sub>0</sub> und der Bewölkung errechnet. Der Bewölkungsgrad wird hierbei
+
The '''global radiation''' (R<sub>G</sub>) is calculated on the basis of the extraterrestrial radiation R<sub>0</sub> and the cloudiness. The degree of cloudiness is here approximated from the relation of the measured sunshine duration to the astronomic possible sunshine duration for unclouded sky (S<sub>0</sub>) with the help of an empirical relation according to the Ångström formula. RG is calculated according to:  
aus dem Verhältnis der gemessenen Sonnenscheindauer zur astronomisch möglichen Sonnenscheindauer bei unbedecktem Himmel (S<sub>0</sub>) unter
+
Zuhilfenahme einer empirischen Beziehung nach der Formel von &Aring;ngström appoximiert. R<sub>G</sub> berechnet sich nach:
+
  
  
Line 874: Line 781:
  
  
Die Berechnung der '''astronomisch möglichen Sonnenscheindauer''' (S<sub>0</sub>) im Jahresgang erfolgt in Abhängigkeit von
+
The calculation of the '''astronomic possible sunshine duration''' (S<sub>0</sub>) in the annual variation is carried out against the latitude:  
der geographischen Breite nach:
+
  
  
 
<math> S_0 = 12.3 + \sin{ \zeta} \cdot \left( 4.3 + \frac{\phi -51}{6} \right) \, \, \, \mathrm{[h]} </math>
 
<math> S_0 = 12.3 + \sin{ \zeta} \cdot \left( 4.3 + \frac{\phi -51}{6} \right) \, \, \, \mathrm{[h]} </math>
  
mit
+
with
  
 
&zeta; = 0.0172*JT - 1.39
 
&zeta; = 0.0172*JT - 1.39
  
JT ... Julianische Tageszählung [1...365;366]
+
JT ... Julian day [1...365;366]
  
&phi; ... Geographische Breite
+
&phi; ... latitude
  
  
Die langwellige Ausstrahlung der Erdoberfläche und die atmosphärische Gegenstrahlung werden gemeinsam als '''effektive langwellige Ausstrahlung''' (R<sub>L</sub>) berechnet. In die Berechnung gehen die Schwarzkörperstrahlung nach Boltzmann, der Bewölkungsgrad und eine
+
The longwave radiation of the earth’s surface and the atmospheric backradiation are calculated together as '''effective longwave radiation''' (R<sub>L</sub>). The black body radiation according to Boltzmann, the degree of cloudiness and an empiric function of the air‘s content of water vapor are part of the calculation:  
empirische Funktion des Wasserdampfgehaltes der Luft ein:
+
 
  
  
Line 900: Line 806:
  
  
mit
+
with
  
&sigma; ... Stefan-Boltzmann-Konstante (=5.67*10-8) [Wm<sup>-2</sup>K<sup>-4</sup>]
+
&sigma; ... Stefan-Boltzmann-constant (=5.67*10-8) [Wm<sup>-2</sup>K<sup>-4</sup>]
  
T<sub>abs<sub>d,n</sub> </sub> ... absolute Lufttemperatur [K]
+
T<sub>abs<sub>d,n</sub> </sub> ... absolute air temperature [K]
  
e<sub>d,n</sub> ... Dampfdruck der Luft [hPa]
+
e<sub>d,n</sub> ... vapor pressure of the air [hPa]
  
  
Aus der, mit der Albedo (&alpha;) der jeweiligen Landnutzungsart reduzierten, Globalstrahlung (R<sub>G</sub>) und der effektiven langwelligen
+
The '''net radiation''' results from global radiation (R<sub>G</sub>) reduced by the albedo (&alpha;) of the particular land use type as well as from the effective longwave radiation (R<sub>L</sub>):  
Ausstrahlung (R<sub>L</sub>) ergibt sich die '''Nettostrahlung''' nach:
+
  
  
Line 920: Line 825:
  
  
Der '''Bodenwärmestrom''' (G) wird schließlich nach der sehr stark vereinfachten Beziehung:
+
The '''soil heat flux''' (G) is then calculated according to the very much simplified relation:  
  
  
Line 929: Line 834:
 
<math> G_d = 0.2 \cdot R_{N_n} </math>
 
<math> G_d = 0.2 \cdot R_{N_n} </math>
  
 
berechnet.
 
  
  
 +
'''Calculation of Live Stock Specific Parameters'''
  
'''Berechnung bestandsspezifischer Parameter'''
+
The influence of different vegetation forms on the evaporation is taken into account via two resistances in the Penman-Monteith-approach: the surface resistance (r<sub>s</sub>) and the aerodynamic resistance (r<sub>a</sub>). For the calculation of the resistances, land use-specific parameters are needed. These are: the leaf area index LAI, the effective vegetation height (eff.Bh.), and the surface resistances for water saturation. Their values are shown for different land cover classes in the following table:
  
Der Einfluss verschiedener Vegetationsformen auf die Verdunstung wird im Penman-Monteith-Ansatz durch zwei verschiedne Widerstände
 
berücksichtigt, dem Oberflächenwiderstand (r<sub>s</sub>) und dem aerodynamischen Widerstand (r<sub>a</sub>).
 
Für die Berechnung der Widerstände werden landnutzungsspezifische Parameter benötigt. Im einzelnen sind dies: der Blattflächenindex
 
LAI, die effektive Bewuchshöhe (eff.Bh.), und die Oberflächenwiderstände bei Wassersättigung. Deren Werte sind für verschiedene
 
Bodenbedeckungsklassen in folgender Tabelle dargestellt:
 
 
 
  
[[Bild:Tabelle.jpg|thumbnail|center|Landnutzungsparameter verschiedener Bodenbedeckungsklassen]]
+
[[File:Tabelle.jpg|thumbnail|center|Land use parameters of different land cover classes]]
  
  
Weiterhin sind die bestandsspezifischen Albedowerte enthalten, die bei der Berechnung der Strahlungsbilanz eingesetzt werden.
+
Furthermore, the live stock specific albedo values are contained which are used for the calculation of the net radiation balance. The leaf area index and the effective vegetation height are represented as distinctive points (d<sub>1</sub>...d<sub>4</sub>) of the year. The points represent the beginning of the vegetation period (d<sub>1</sub>), the reaching of the maximum development or ripeness (d<sub>2</sub>), the ripeness period until the point d<sub>3</sub> and then the decrease until the end of the vegetation period (d<sub>4</sub>). The individual points are represented by the Julian days (d<sub>1</sub> = 110, d<sub>2</sub> = 150, d<sub>3</sub> = 250, d<sub>4</sub> = 280) for areas at about 400m height. For other heights (z) these points are approximated according to the following empirical relation:  
Der Blattflächenindex und die effektive Bewuchshöhe sind in Form von markanten Stellen (d<sub>1</sub>...d<sub>4</sub>) des Jahresgangs dargestellt.  
+
Die Punkte repräsentieren den Beginn der Vegetationsphase (d<sub>1</sub>), das Erreichen der maximalen Ausprägung oder Vollreife (d<sub>2</sub>),
+
die Vollreifephase bis zum Punkt d<sub>3</sub> und dann die Abnahme bis zum Ende der Vegetationsperiode (d<sub>4</sub>). Die einzelnen Punkte werden
+
durch die julianischen Tageswerte (d<sub>1</sub> = 110, d<sub>2</sub> = 150, d<sub>3</sub> = 250, d<sub>4</sub> = 280) für Gebiete in ca. 400m Höhe repräsentiert. Für
+
andere Höhen (z) werden diese Punkte nach folgender empirischen Beziehung approximiert:
+
  
  
Line 963: Line 856:
  
  
Die Werte zwischen den einzelnen Punkten werden linear interpoliert. Der '''aerodynamische Widerstand''' (ra) der jeweiligen Landnutzungsart
+
The values between the individual points are interpolated linearly. The '''aerodynamic resistance''' (ra) of the particular land use type can be calculated according to the following equation:  
lässt sich nach folgender Gleichung berechnen:
+
  
  
Line 970: Line 862:
  
  
mit
+
with
  
z<sub>m</sub> ... Messhöhe der Windgeschwindigkeit (=2 m) [m]
+
z<sub>m</sub> ... measuring height of the wind speed (=2 m) [m]
  
z<sub>0</sub> ... aerodynamische Rauhigkeitslänge (&asymp; 0.125*effektive Bewuchshöhe) [m]
+
z<sub>0</sub> ... aerodynamic roughness length (&asymp; 0.125*effective vegetation height) [m]
  
v<sub>2</sub> ... Windgeschwindigkeit in 2 m Höhe [ms<sup>-1</sup>]
+
v<sub>2</sub> ... wind speed at 2 m height [ms<sup>-1</sup>]
  
  
Für effektive Bewuchshöhen von gleich oder mehr als 10 m berechnet sich die aerodynamische Widerstand vereinfacht nach:
+
The aerodynamic resistance for effective vegetation heights of equal or more than 10 m can be calculated according to the following simplified equation:  
  
  
Line 985: Line 877:
  
  
Der '''Oberflächenwiderstand''' der jeweiligen Nutzungsart berechnet sich nach:
+
The '''surface resistance''' of the particular use type is calculated according to the following equation:  
  
  
Line 994: Line 886:
  
  
mit
+
with
  
rsc ... Oberflächenwiderstand [sm<sup>-1</sup>]
+
rsc ... surface resistance [sm<sup>-1</sup>]
  
 
A ... 0.7<sup>LAI</sup> [-]
 
A ... 0.7<sup>LAI</sup> [-]
  
rss ... Oberflächenwiderstand von unbewachsenem Boden [sm<sup>-1</sup>]
+
rss ... surface resistance of uncovered soil [sm<sup>-1</sup>]
  
  
  
'''Spezifische Anpassung der Verdunstung während der Modellierung'''
+
'''Specific Adaptation of Evaporation during the Modeling '''
  
  
Weiterhin haben '''Hangneigung und Exposition''' einen signifikanten Einfluss aud die Höhe der Verdunstung und werden deshalb
+
Furthermore, '''slope and aspect''' significantly influence the evaporation amount and are therefore taken into account by the following correction factors:  
durch folgenden Korrekturfaktor berücksichtigt:
+
  
  
 
<math> Korr_{ETP} = (0.01605 \cdot \sin{( \delta -90)} - 0.00025 ) \cdot \alpha + 1 </math>
 
<math> Korr_{ETP} = (0.01605 \cdot \sin{( \delta -90)} - 0.00025 ) \cdot \alpha + 1 </math>
  
mit
+
with
  
&delta; ... Exposition von Nord in Grad
+
&delta; ... aspect from north in degree
  
&alpha; ... Hangneigung in Grad
+
&alpha; ... slope in degree
  
  
Mit diesem Korrekturfaktor berechnet sich die '''Verdunstung von geneigten Flächen''' (ETP') nach:
+
The '''evaporation of slopes''' (ETP') is calculated with the help of this correction factor:  
  
  
Line 1,026: Line 917:
  
  
Zur '''Berücksichtung der aktuellen Bodenfeuchte''' finden entsprechende Korrekturfunktionen Anwendung. Es liegt der Gedanke
+
For the '''consideration of the current soil humidity''' the particular correction functions are applied. It is assumed that the vegetation can only transpire until a particular water content of the soil with the potential evaporation rate is reached. After going below this water content, the real evaporation decreases proportionally to the potential evaporation until it becomes zero at the point of the permanent wilting point. In J2000 there is a linear function with the calibration coefficient linear_reduc and a non linear procedure with the calibration coefficient poly_reduc available for the reduction:  
zugrunde, dass die Vegetation nur bis zu einem bestimmten Wassergehalt des Bodens mit der potentiellen Verdunstungsrate
+
transpirieren kann. Nach Unterschreiten dieses Wassergehaltes nimmt die reale Verdunstung im Verhältnis zur potentiellen
+
Verdunstung ab, bis sie bei Erreichen des permanenten Welkepunktes Null wird.
+
Zur Reduktion stehen in J2000 eine lineare Funktion mit dem Eichkoeffizienten ''linear_reduc'' und ein nicht lineares Verfahren mit dem Eichkoeffizienten ''poly_reduc'' zur Verfügung:  
+
  
  
Line 1,046: Line 933:
  
  
Mit der linearen Funktion wird angenommen, dass die aktuelle ETP der potentiellen ETP entspricht, so lange die relative MPS-Sättigung größer oder gleich dem ''linear_reduc'' ist. Fällt die relative MPS_Sättigung unter den ''linear_reduc'', so sinkt der Reduktionsfaktor f(&Theta;) linear. Somit stellt ''linear_reduc'' einen vom Anwender zu bestimmenden Grenzwert dar und kann Werte von 0 bis 1 annehmen. Im Gegensatz dazu kann der Eichkoeffizient ''poly_reduc'' alle Werte zwischen Null und Unendlich annehmen. Bei einem kleinen Wert von ''poly_reduc'' wird der Reduktionsfaktor auch bei einer hohen MPS-Sättigung stark verringert. Werden die Werte von ''poly_reduc'' größer, so erfährt die potentielle ETP zunächst eine geringe Reduktion. Bei abnehmender MPS-Sättigung erfolgt eine nahezu sprunghafte, größere Reduktion.
+
With the linear function it is assumed that the current ETP conforms to the potential ETP as long as the relative MPS saturation equals or is greater than the ''linear_reduc''. If the relative MPS saturation falls below the ''linear_reduc'', the reduction factor f(&Theta;) decreases linearly. Thus, ''linear_reduc'' represents a threshold that needs to be defined by the user and that can take values from 0 to 1. In contrast, the calibration coefficient ''poly_reduc'' can take all values between zero and infinite. For a small value of ''poly_reduc'' the reduction factor is also reduced for a high MPS saturation. If the values of ''poly_reduc'' increase, the potential ETP slightly decreases. For decreasing MPS saturation, a higher reduction occurs. The real evaporation is calculated with the value from the correction function against the current water content of the soil from the potential evaporation (ETP'):  
Mit dem Wert der Korrekturfunktion wird in Abhängigkeit vom aktuellen Wassergehaltes des Bodens aus der potentiellen Verdunstung
+
 
(ETP') die reale Verdunstung nach folgender Gleichung berechnet:
+
  
  
Line 1,056: Line 943:
 
----
 
----
  
=== Interzeptionsmodul ===
+
=== Interception Module ===
  
Das Interzeptionsmodul dient der Berechnung der Bestandniederschläge aus den Freilandniederschlägen in Abhängigkeit von der
+
The interception module serves the calculation of the net precipitations from the field precipitations against the particular vegetation covers and their development in the annual variation. The field precipitation is reduced by the interception part to the net precipitation via interception. Thus, net precipitation only occurs when the maximum interception storage capacity of the vegetation is exhausted. The surplus is then passed on as through falling precipitation to the following module. The maximum interception capacity (Int <sub>max</sub>) is calculated in J2000 according to the following formula:  
jeweiligen Vegetationsbedeckung und deren Ausprägung im Jahresgang. Durch die Interzeption wird der Freilandniederschlag
+
um den Interzeptionsteil auf den Bestandsniederschlag reduziert. Bestandsniederschlag tritt demzufolge nur auf,  
+
wenn die maximale Interzeptionsspeicherkapazität der Vegetation erschöpft ist.
+
Der Überschuss wird dann als durchfallender Niederschlag an das folgende Modul weitergegeben.  
+
Die maximale Interzeptionskapatät (Int <sub>max</sub>) wird in J2000 nach folgender Formel berechnet:
+
  
 
<math>Int_{max} = \alpha \cdot{LAI} \, \, \, \mathrm{[mm]}</math>
 
<math>Int_{max} = \alpha \cdot{LAI} \, \, \, \mathrm{[mm]}</math>
  
mit
+
with
  
&alpha; ... Speicherkapazität pro m<sup>2</sup> Blattfläche in Abhängigkeit von der Art des Niederschlages [mm]
+
&alpha; ... storage capacity per m2 leaf area against the precipitation type [mm]
  
LAI ...  Blattflächenindex der betreffenden Landnutzungsklasse [-]
+
LAI ...  leaf area index of the particular land use class [-]
  
Der Parameter &alpha; besitzt je nach Ausprägung des Art des interzeptierten Niederschlags (Regen oder Schnee)  
+
The parameter &alpha; has a different development, depending on the type of the intercepted precipitation (rain or snow), since the maximum interception capacity of snow is noticeably higher than of liquid precipitation. The leaf area index for the individual vegetation types of the year is calculated with the described method for each day of the time series. The emptying of the interception storage is carried out exclusively by evaporation. A special case occurs when the development of the parameter &alpha; changes from rain to snow due to the air temperature. This leads to a heavy decrease of the maximum interception storage capacity. Possible surplus is passed on as draining precipitation to the following module.  
eine unterschiedliche Ausprägung, da die die maximale Interzeptionskapazität von Schnee deutlich über der von flüssigem
+
Niederschlag liegt.
+
Der Blattflächenindex für die einzelnen Vegetationsarten im Jahresgang wird mit dem bereits vorgestellten Verfahren für jeden Tag
+
der Zeitreihe berechnet.  
+
Die Entleerung des Interzeptionsspeichers erfolgt ausschließlich über Verdunstung. Ein Sonderfall tritt auf,
+
wenn sich die Ausprägung des Parameters &alpha; aufgrund der Lufttemperatur von Schnee auf Regen ändert.  
+
Dies führt zur sprunghaften Herabsetzung der maximalen Interzeptionsspeicherkapazität. Eventueller Überschuss wird als
+
abtropfender Niederschlag an das anschließende Modul weitergegeben.
+
  
 
----
 
----
  
=== Schneemodul ===
+
=== Snow Module ===
  
  
Die Schneeentwicklung ist im Schneemodul des J2000 in 3 Phasen untergliedert: die Schneeakumulation, die Metamorphose und
+
The snow development is subdivided into three phases in the snow module of J2000: the snow accumulation, the metamorphosis and the snow melt. The amount of snow of the total precipitation is defined via the air temperature in order to calculate the daily accumulation rate (Acc). For this purpose, it is assumed that going below a particular threshold temperature the total precipitation consists of snow and for going above a second threshold temperature the total precipitation consists of rain. In the zone between these threshold temperatures a mixed precipitation occurs. In order to define the threshold temperatures and therefore the size of the transition zone, a temperature value (Trs in °C) needs to be given which conforms to the temperature where 50% of precipitation is snow and 50% is rain. Additionally, a parameter Trans (in K) needs to be defined that is taken as the half width of the transition zone. The real snow proportion (p(s)) of the daily precipitation against the air temperature (T) is calculated according to:  
die Schneeschmelze. Zur Berechnung der täglichen Akkumulationsrate (Acc) wird zunächst anhand der Lufttemperatur bestimmt, wie hoch der
+
Schneeanteil am Gesamtniederschlag ist. Zur Bestimmung des Anteils wird angenommen, daß bei Unterschreiten einer bestimmten
+
Grenztemperatur der gesamte Niederschlag als Schnee fällt und bei Überschreiten einer zweiten Grenztemperatur der gesamte
+
Niederschlag als Regen fällt. Im Bereich zwischen diesen Grenztemperaturen treten Mischniederschläge auf. Zur Bestimmung
+
der Grenztemperaturen und damit der Breite des Übergangsbereiches muß ein Temperaturwert (Trs in °C) angegeben werden, der
+
der Temperatur entspricht, bei der 50% des Niederschlages als Schnee und 50% als Regen fallen. Zusätzlich muß ein Parameter
+
Trans (in K) bestimmt werden, der der halben Breite des Übergangsbereiches entspricht. Der tatsächliche Schneeanteil (p(s)) am
+
Tagesniederschlag in Abhängigkeit von der Lufttemperatur (T) berechnet sich dabei nach:
+
  
  
Line 1,103: Line 969:
  
  
Die tägliche Schneemenge (N<sub>s</sub>) bzw. Regenmenge (N<sub>r</sub>) ergibt sich nach:
+
The daily amount of snow (N<sub>s</sub>) or amount of rain (N<sub>r</sub>) is calculated according to:  
  
  
Line 1,113: Line 979:
  
  
Das so berechnete tägliche Schneewasseräquivalent wird dem Festspeicher (SWCdry) zugeschlagen. Ist p(s) kleiner 1.0, wird der
+
The so calculated snow water equivalent is allocated to the solid storage (SWCdry). If p(s) is less than 1.0, the resulting amount of rain is added to the liquid storage.  
resultierende Regenanteil zum Flüssigspeicher addiert.
+
  
Die resultierende Schneehöhenänderung berechnet sich unter Zuhilfenahme der Dichte von Neuschnee (&rho;<sub>new</sub>) aus:
+
The resulting snow height change is calculated with the help of the density of fresh snow (&rho;<sub>new</sub>):  
  
  
Line 1,122: Line 987:
  
  
Mit dem Kälteinhalt der Schneedecke werden die thermischen Verhältnisse unter der
+
The thermal circumstances under the snow cover are taken into account with the store of cold in the snow cover in connection with the snow melt. Since melted water freezes immediately due to negative isothermal circumstances under the snow cover and thus, the runoff is stopped, the store of cold needs to reach the value zero so that the process of snowmelt begins. Consequently, negative temperatures raise the store of cold whereas positive temperatures reduce it. The calculation of the store of cold (CC) results from the product of the air temperature by a calibration parameter (coldContFac):  
Schneedecke im Zusammenhang mit der Schneeschmelze berücksichtigt. Da durch negative  
+
isothermische Verhältnisse unter der Schneedecke geschmolzenes Wasser
+
gleich wieder gefriert und somit der weitere Abfluss verhindert wird, muss der Kälteinhalt
+
erst den Wert Null erreichen, damit die Schneeschmelze einsetzen kann. Demnach erhöhen
+
negative Temperaturen den Kälteinhalt und positive Temperaturen verringern ihn.
+
Die Berechnung des Kälteinhaltes (CC) ergibt sich aus dem Produkt der Lufttemperatur
+
mit einem Kalibrierungsparameter (coldContFac):
+
  
  
Line 1,135: Line 993:
  
  
Die Schneedecke ist in der Lage, bis zu einer gewissen Grenzdichte (critDens) freies Wasser (liquidWater) in ihren Poren
+
The snow cover can store liquid water in its pores until a certain critical density (critDens). This storage capability is lost nearly completely and irreversibly when a certain amount of liquid water proportionally to the total snow water equivalent (between 40% and 45%) is reached. This is taken into account in the modeling by the calculation of the maximum water content (WS<sub>max</sub>) of the snow cover:  
zu speichern. Diese Speicherfähigkeit geht bei Erreichen eines bestimmten Anteils von freiem Wasser im Verhältnis zum
+
Gesamtschneewasseräquivalent (zwischen 40% und 45)% nahezu vollkommen und irreversibel verloren. Dies wird bei der Modellierung
+
durch die Berechnung eines maximalen Wassergehaltes (WS<sub>max</sub>) der Schneedecke berücksichtigt:
+
  
  
Line 1,144: Line 999:
  
  
Die kritische Grenzdichte (critDens) ist dabei vom Anwender anzugeben. Das in der Schneedecke gespeicherte
+
The critical density (critDens) needs to be given by the user. The stored water in the snow cover that goes beyond this threshold is drained:  
Wasser, das diesen Grenzwert überschreitet, kommt zum Abfluß:
+
  
  
Line 1,151: Line 1,005:
  
  
Das resultierende Schmelzwasser (SMR) geht als Eingabewert in das sich anschließende Bodenmodul ein. Die Dichte der
+
The resulting snow water (SMR) is used as input value in the following soil module. The snow cover’s density keeps the value of the critical density until the snow cover thaws or goes back into the accumulation phase due to new snowfall.  
Schneedecke verharrt dabei auf der kritischen Grenzdichte, bis sie entweder vollkommen abgetaut ist oder durch erneutes Auftreten von
+
Schneefall wieder in die Akkumulationsphase übergeht.
+
  
  
Für die Berechnung der potentiellen Schmelzrate stehen in J2000 zwei Verfahren zur Verfügung:
+
In J2000 there are two methods available for the calculation of the potential melting rate: a simple method is based on the tight relation of air temperature and the snowmelt intensity. The potential melting rate (potMR) is calculated on the basis of air temperature, the day degree factor (ddf) and the total snow density (totSnowDens):  
Ein einfaches Verfahren nutzt den engen Zusammenhang zwischen der Lufttemperatur und der
+
Schneeschmelzintensität. Die potentielle Schneeschmelzrate (potMR) berechnet sich aus der Lufttemperatur, dem Grad-Tag-Faktor (ddf = day degree factor) und der
+
totalen Schneedichte (totSnowDens):  
+
  
  
Line 1,165: Line 1,014:
  
  
Dabei stellt der Grad-Tag-Faktor einen empirisch ermittelten Abtaukoeffizienten dar.
+
The day degree factor represents an empirically generated thawing coefficient. Alternatively to the mentioned calculation formula, the potential melting rate can also be calculated via a more complex approach. In addition to the amount of precipitation (P in mm) and the air temperature, further energy fluxes (air temperature, precipitation temperature and soil temperature) are taken into account in this calculation. Since the necessary input data for this approach (e.g. precipitation intensity, heat of fusion, and wind speed) are often unavailable, they need to be calibrated. The so resulting and simplified equation only contains the temperature data, precipitation data and the calibration factors ''r_factor'', ''g_factor'' and ''t_factor'' that need to be generated empirically.  
Alternativ zur genannten Berechnungsformel kann die potentielle Schneeschmelzrate auch
+
durch einen komplexeren Ansatz berechnet werden. In dieser Berechnung werden neben der Niederschlagsmenge (P in mm) und der Lufttemperatur
+
zusätzliche Energieflüsse (Luft-, Niederschlags- und Bodentemperatur) berücksichtigt. Da die
+
benötigten Eingabedaten für diesen Ansatz (z.B. Niederschlagsintensität, Schmelzwärme von
+
Schnee, Windgeschwindigkeit) oft nicht zur Verfügung stehen, müssen diese geeicht werden.
+
Die daraus resultierende, vereinfachte Gleichung  beinhaltet nun
+
neben den Temperatur- und Niederschlagsdaten nur noch die empirisch zu ermittelten
+
Kalibrierungsfaktoren ''r_factor'', ''g_factor'' und ''t_factor''.  
+
  
  
Line 1,181: Line 1,022:
 
----
 
----
  
=== Bodenwassermodul ===
+
=== Soil Water Module ===
  
Das Bodenmodul gliedert sich in Prozess- (Infiltration, Evapotranspiration) und
+
The soil module is structured in process units (infiltration, evapotranspiration) and store units (middle pore storage = MPS, large pore storage = LPS, depression storage). At first, the infiltration capacity against the water saturation in the soil and a maximum infiltration rate is estimated with the help of an empirical method. The maximum infiltration rate functions as threshold. When this threshold is crossed, the surplus water is stored in the depression storage or lead into the direct surface runoff. The maximum amount of water that can be held back in surface depressions is seen as maximum depression storage (maxDepStor). Furthermore, the depression storage is dependent on the surface structure as well as on the slope and is halved when the slope is greater than 5%. The precipitation water that is not infiltrated or stored in the depression storage drains as surface runoff. In order to calculate the infiltration (Inf), an empirical calculation method is used in J2000. For this purpose, a maximum infiltration rate (maxINF in mm/d), defined by the user, against the relative saturation deficit of the soil (1 - soil<sub>sat</sub>) is taken into account:  
Speichereinheiten (Mittelporenspeicher (Middle Pore Storage = MPS), Grobporenspeicher
+
(Large Pore Storage = LPS), Muldenrückhalt). Zunächst wird mit Hilfe einer empirischen
+
Methode die Infiltrationskapazität in Abhängigkeit der Wassersättigung im Boden und einer
+
maximalen Infiltrationsrate abgeschätzt. Die maximale Infiltrationsrate fungiert als
+
Grenzwert, bei dessen Überschreitung das überschüssige Wasser im Muldenrückhalt
+
zwischengespeichert oder dem direkten Oberflächenabfluss zugeführt wird. Als maximaler
+
Muldenrückhalt (maxDepStor) wird die Wassermenge verstanden, die in
+
Oberflächendepressionen maximal zurückgehalten werden kann. Der Muldenrückhalt ist weiterhin von
+
der Oberflächenstruktur sowie vom Gefälle abhängig und halbiert sich bei einer
+
Geländeneigung, die größer als 5% ist. Das Niederschlagswasser, welches nicht infiltriert
+
oder im Muldenrückhalt zwischengespeichert wird, fließt als Oberflächenabfluss ab.
+
Zur Berechnung der Infiltration (Inf) dient im J2000 eine empirische Berechnungsmethode.  
+
Dazu wird eine vom Anwender definierte maximale
+
Infiltrationsrate (maxINF in mm/d) in Abhängigkeit des relativen Sättigungsdefizits des
+
Bodens (1 - soil<sub>sat</sub>) betrachtet:
+
  
  
Line 1,205: Line 1,031:
  
  
Dabei erfolgt die Berechnung der relativen Sättigung des Bodens nach:
+
The calculation of the relative saturation of the soil is carried out according to:  
  
  
Line 1,211: Line 1,037:
  
  
mit
+
with
 +
 
  
MPS<sub>act</sub>, MPS<sub>max</sub> ... aktuelle, maximale Füllung des Mittelporenspeichers
+
MPS<sub>act</sub>, MPS<sub>max</sub> ... actual, maximum filling of the middle pore storage
  
LPS<sub>act</sub>, LPS<sub>max</sub> ... aktuelle, maximale Füllung des Grobporenspeichers
+
LPS<sub>act</sub>, LPS<sub>max</sub> ... actual, maximum filling of the large pore storage
  
  
Für die Bestimmung der maximalen Infiltrationsrate werden drei Infiltrationsszenarien
+
Three infiltration scenarios are considered for the definition of the maximum infiltration rate. The setting of the maximum infiltration rate (maxINF), defined by the user, with the parameter ''Inf_winter'' is the normal case of the infiltration for the winter half year. Additionally, the special infiltration conditions for the convective precipitation with short duration and high intensity that occur in summer are taken into account via the parameter ''Inf_summer''. Furthermore, with the setting of the parameter ''Inf_snow'', the circumstance of decreased infiltration due to partly or complete frozen soil when snow cover occurs shall be taken into account. If the amount of water that is to be infiltrated is greater than the maximum infiltration rate (maxINF) set up by the user, the surplus water is stored in the depression storage or drains as surface runoff. Furthermore, the infiltration is influenced by the sealed grade of the surface. For a sealed grade greater than 80% (impervious areas IP>80) only 25% of the precipitation infiltrates; for a sealed grade less than 80% (impervious areas IP<80) 60% of the precipitation infiltrates. The infiltrated precipitation is allocated to the middle pore storage and the large pore storage whereby the saturation deficit of the MP is determining. The influx in the MPS (MPS<sub>in</sub>) results from the infiltrated precipitation (Inf) against its relative storage content (&Theta;MPS) as well as from a calibration coefficient (Dist coef) set up by the user. MPSin is calculated according to the following equation:  
berücksichtigt. Die Einstellung der vom Anwender bestimmten maximalen Infiltrationsrate
+
(maxINF) mit dem Parameter ''Inf_winter'' stellt den Normalfall der Infiltration für das
+
Winterhalbjahr dar. Zusätzlich dazu werden die besonderen Infiltrationsbedingungen für die
+
im Sommerhalbjahr auftretenden konvektiven Niederschläge mit kurzer Dauer und hoher
+
Intensität durch den Parameter ''Inf_summer'' berücksichtigt. Zusätzlich wird mit der Einstellung
+
des Parameters ''Inf_snow'' versucht, dem Zustand verminderter Infiltration durch
+
teilweisen oder vollständig gefrorenen Boden bei Schneebedeckung gerecht zu werden. Ist
+
dabei die zu infiltrierende Wassermenge größer als die vom Anwender festgelegte maximale
+
Infiltrationsrate (maxINF), wird das überschüssige Wasser im Muldenrückhalt
+
zwischengespeichert oder fließt oberflächig ab.
+
Die Infiltration wird weiterhin durch den Versiegelungsgrad der Oberfläche beeinflusst.
+
Bei einem Versiegelungsgrad mit mehr als 80%
+
(impervious areas IP>80) versickert nur noch 25% des Niederschlages, bei einem Versiegelungsgrad
+
mit weniger als 80% (impervious areas IP<80) versickert 60% des Niederschlags.  
+
Der infiltrierte Niederschlag wird nun zwischen dem Mittelporenspeicher und dem
+
Grobporenspeicher aufgeteilt, wobei hier das Sättigungsdefizit des MPS ausschlaggebend ist.
+
Der Zufluss in den MPS (MPS<sub>in</sub>) ergibt sich in Abhängigkeit seines relativen Speicherinhaltes
+
(&Theta;MPS) aus dem infiltrierten Niederschlag (Inf) sowie einen vom Anwender definierten
+
Kalibrierungskoeffizienten (Dist coef) und wird nach folgender Gleichung berechnet:
+
  
  
Line 1,243: Line 1,051:
  
  
Der infiltrierte Anteil des Niederschlagswassers, welcher nicht in vom MPS aufgenommen wird, gelangt in den
+
The infiltrated amount of precipitation water which is not absorbed by the MPS goes into the large pore storage (LPS<sub>in</sub>):
Grobporenspeicher (LPS<sub>in</sub>):
+
  
  
Line 1,250: Line 1,057:
  
  
Der Wertebereich des Kalibrierungskoeffizienten liegt zwischen Null, so dass kein Wasser
+
The value range of the calibration coefficient lies between zero (so that no water can flow into the MPS) and infinite. The discharge from the MPS is exclusively carried out via evapotranspiration (ETP), which is calculated from the current storage filling of the MPS and the potential ETP (see calculation of evapotranspiration).  
in den MPS gelangt, und Unendlich. Der Austrag aus dem MPS erfolgt ausschließlich über die Evapotranspiration (ETP),
+
welche aus der aktuellen Speicherfüllung des MPS und der potentiellen ETP berechnet wird (siehe Evapotranspirationsberechnung).
+
  
Die vertikale (Perkolation) und laterale (Zwischenabfluss) Wasserbewegung im Boden
+
The vertical (percolation) and lateral (interflow) water movement in the ground exclusively occurs in the LPS and is therefore dependent on the amount of the large pores. At first, the all in all runoff from the LPS (LPSout) which finally divides into the two mentioned runoff components needs to be calculated. It is calculated against the relative saturation of the soil (soilsat), the actual large storage content (LPSact) and a calibration coefficient (LPSout).  
findet ausschließlich in den LPS statt und ist somit vom Anteil der Grobporen abhängig.
+
Zunächst ist der gesamte Ausfluss aus den LPS (LPSout) zu berechnen, der sich schließlich auf
+
die beiden genannten Abflusskomponenten aufteilt. Dieser
+
wird in Abhängigkeit der relativen Sättigung des Bodens (soilsat), des aktuellen
+
Grobspeicherinhaltes (LPSact) und einem Kalibrierungskoeffizienten (LPSout) berechnet.
+
  
  
Line 1,266: Line 1,066:
  
  
Die anschließende Verteilung des LPS-Ausflusses in die vertikale  und laterale (inter)  
+
The following allocation of the LPS runoff in the vertical and lateral (inter) flow direction is carried out against the slope and a user specific calibration factor (LatVertDist) which can take values between zero and infinite.
Fließrichtung erfolgt in Abhängigkeit der Hangneigung und eines
+
anwenderspezifischen Kalibrierungsfaktors (LatVertDist),
+
Werte zwischen 0 und plus unendlich annehmen kann.  
+
  
  
Line 1,277: Line 1,074:
  
  
Die Perkolationsrate kann durch eine vom Anwender bestimmte maximale, absolute,
+
The percolation rate can be restricted by a user specific maximum, absolute, daily percolation rate (maxPerc). When the maximum percolation rate is crossed, the surplus water is led to the interflow. The maximum percolation rate results from the hydraulic permeability and the amount of large pores and macro pores and can be estimated only vaguely. The water that is in the LPS after a time step can diffuse in the MPS (LPS2MPS) when the actual LPS storage content (LPSact), the relative saturation of the MPS (&Theta;MPS) and the calibration coefficient ''Diff coef'' are considered:  
tägliche Perkolationsrate (maxPerc) begrenzt werden. Bei Überschreitung der maximalen
+
Perkolationsrate wird das überschüssige Wasser dem Zwischenabfluss zugeführt. Die
+
maximale Perkolationsrate ergibt sich aus der hydraulischen Durchlässigkeit und den Anteil
+
an Grob- sowie Makroporen und kann nur vage abgeschätzt werden.  
+
Auch das Wasser, welches sich nach einem Zeitschritt im LPS befindet, kann unter
+
Berücksichtigung des aktuellen LPS-Speicherinhaltes (LPSact), der relativen Sättigung
+
des MPS (&Theta;MPS) und dem Kalibrierungskoeffizienten ''Diff coef'' in den MPS diffundieren
+
(LPS2MPS):
+
  
  
Line 1,291: Line 1,080:
  
  
Der Kalabrationsparameter ''Dist coef'' hat ebenfalls einen theoretischen Wertebereich von 0 bis plus unendlich, wobei
+
The calibration parameter ''Dist coef'' also possesses a theoretical value range from 0 to infinite. No diffusion takes place for values of 0. When the value 5 is crossed, nearly the entire water that remained in the large pores diffuses in the MPS.  
bei einem Wert von 0 keine Diffusion erfolgt und bei
+
überschreiten des Wertes 5 nahezu das gesamte in den Grobporen verbliebene Wasser in den
+
MPS diffundiert.
+
  
  
Während die Perkolation durch die maximale Perkolationsrate begrenzt wird, kann der
+
While the percolation is limited by the maximum percolation rate, the discharge can be decelerated via the direct runoff (RD1) and the interflow (RD2) by user-defined retention coefficient (recRD1, recRD2):  
Austrag über den direkten Abfluss (RD1) und den Zwischenabfluss (RD2) durch vom
+
Anwender definierte Rückhaltekoeffizienten (recRD1, recRD2) abgebremst werden:
+
 
   
 
   
  
Line 1,305: Line 1,089:
  
  
Erhält ''recRD1'' bzw. ''recRD2'' einen größeren Wert als 1, so stellt dies eine Verringerung des Abflusses dar und das
+
If ''recRD1 or recRD2'' gets a greater value than1, the runoff is decelerated and the surplus water remains in the particular storages until the next time steps. Equally, a small value for k leads to an increase of the runoff.
überschüssige Wasser verweilt bis zum nächsten Zeitschritt in den jeweiligen Speichern.
+
Äquivalent dazu verstärkt ein kleiner Wert für k den Abfluss.
+
  
  
 
----
 
----
  
=== Grundwassermodul ===
+
=== Ground Water Module ===
  
Das Modellkonzept des Grundwassermoduls in J2000 ermöglicht, unter Berücksichtigung
+
The model concept of the ground water module in J2000 offers the viewing of the ground water runoff of all geologic formations that occur in the catchment area in consideration of the different storage and runoff behaviours. In the individual geologic units there is a distinction between the upper ground-water reservoir (RG1) in loose weathered material with high permeability and the lower ground-water reservoir (RG2) in fractures and clefts of the bedrock. Consequently, two basis runoff components are generated: a fast one from the upper ground-water reservoir and a slow one from the lower ground-water reservoir. The filling of the ground-water reservoir results from the vertical runoff component of the soil module. The emptying can be carried out by the lateral subterranean runoff components as well as capillary elevation in the unsaturated zone. The parameterization of ground-water reservoirs is carried out with the definition of the maximum storage capacity of the upper (maxRG2) and the lower (max RG1) ground water reservoir as well as a retention coefficient each for both reservoirs (recRG1) and (recRG2). Both parameters need to be determined for each geologic entity separately. The maximum storage capacity results from the product of the cavity and the thickness of the individual storage per unit area. The calculation of the water yield is carried out against the actual storage fillings as a linear drain function. The storage retention coefficients, which are to be seen as residence times of the water in the storage of interest, are taken into account as factor of the actual storage content (actRG1 and actRG2) for the calculation of the ground water runoff (outRG1 and outRG2):  
der unterschiedlichen Speicher- und Abflussverhalten, die Betrachtung des
+
Grundwasserabflusses aller im Einzugsgebiet vorkommenden geologischen Formationen. In
+
den einzelnen geologischen Einheiten wird zwischen dem oberen Grundwasserspeicher (RG1)
+
im lockeren Verwitterungsmaterial mit hoher Durchlässigkeit und dem unteren
+
Grundwasserspeicher (RG2) in Rissen und Klüften des Grundgesteins unterschieden.  
+
Es werden dementsprechend zwei Basisabflusskomponenten generiert, eine schnelle aus dem oberen Grundwasserspeicher
+
und eine langsame aus dem unteren Grundwasserspeicher. Die Füllung der Grundwasserspeicher erfolgt aus der vertikalen
+
Ablusskomponente des Bodenmoduls, die Entleerung kann durch die lateralen unterirdischen Abflusskomponenten und
+
kapillaren Aufstieg in die ungesättigte Zone erfolgen.
+
Die Parametrisierung der Grundwasserspeicher erfolgt mit der Bestimmung der maximalen
+
Speicherkapazität des oberen (maxRG1) und des unteren Grundwasserspeichers (maxRG2)
+
sowie jeweils eines Rückhaltekoeffizienten für die beiden Speicher, (recRG1) und (recRG2).  
+
Beide Parameter sind für jede geologische Einheit seperat zu bestimmen.
+
Die maximale Speicherkapazität ergibt sich aus dem Produkt des
+
Hohlraumanteils und der Mächtigkeit des einzelnen Speichers pro Einheitsfläche.
+
Die Berechnung der Wasserabgabe erfolt in Abhängigkeit der aktuellen Speicherfüllungen in Form einer
+
linearen Auslauffunktion.
+
Die Speicherrückhaltekoeffizienten, welche als Verweilzeiten des Wassers im betrachteten Speicher zu verstehen sind, gehen als Faktor
+
des aktuellen Speicherinhaltes (actRG1 und actRG2) in die Berechnung des
+
Grundwasserausflusses (outRG1 und outRG2) wie folgt ein:
+
  
  
Line 1,343: Line 1,105:
  
  
Um der Abflussdynamik der Grundwasserspeicher im Einzugsgebiet gerecht zu werden,
+
In order to take the ground water reservoirs’ runoff dynamics in the catchment area into account, the ground water runoffs outRG1 and outRG2 can be multiplied by the calibration parameters ''gwRG1Fact'' or ''gwRG2Fact'' for the particular upper or lower ground water reservoir. The given parameter settings of these factors take the value one, whereby the value must not be less than zero. Generally, the runoff from the ground-water reservoirs is carried out faster when a small factor is given and slower when a big factor is given.
können die Grundwasserabflüsse outRG1 und outRG2 mit den Kalibrationsparametern ''gwRG1Fact'' bzw.
+
''gwRG2Fact'' für jeweils den oberen und unteren Grundwasserspeicher multipliziert werden. Die
+
gegebenen Parametereinstellungen dieser Faktoren belaufen sich auf einen Wert von
+
eins, wobei der Wert nicht kleiner als Null sein dürfen. Prinzipiell erfolgt der
+
Abfluss aus den Grundwasserspeichern bei einem kleinen Faktor schneller und bei einem großen Faktor verzögert.
+
  
Zur weiteren Anpassung an das Einzugsgebiet ist der Eichkoeffizient ''gwRG1RG2dist'' einzustellen.
+
For a further adaptation to the catchment area, the calibration coefficient gwRG1RG2dist has to be set up. It influences the allocation of the percolation water from the soil module (perc) to both ground water reservoirs for each Hydrological Response Unit in consideration of the slope. The calibration parameter ''disttRG1RG2'' is used as exponent in the calculation of the ground water influx (inRG1 and inRG2):  
Er beeinflusst unter Berücksichtigung der Hangneigung die Verteilung des Perkolationswassers vom
+
Bodenmodul (perc) auf die beiden Grundwasserspeicher für jede Hydrologisch Homogene Einheit.
+
Der Kalibrationsparameter ''distRG1RG2'' geht als Exponent in die Berechung des Grundwasserzuflusses (inRG1 und inRG2) ein:
+
  
  
Line 1,362: Line 1,116:
  
  
Zusätzlich zu den genannten Parametern hat in ebenen Gebieten mit sehr hohen
+
In addition to the mentioned parameters, the capillary elevation of the ground water (GW2MPS) has an important influence on the soil storage filling in plane areas with very high ground water level, e.g. in wide flood lands. In order to take that circumstance into account, the still free middle pore storage (deltaMPS), which results from the difference of the maximum middle pore storage and the actual middle pore storage volume, is multiplied by an empirically generated factor. The calibration coefficient ''gwCapRise'' as well as the relative saturation of the MPS (ThetaMPS) are used for the calculation of this factor:  
Grundwasserständen, z.B. in ausgedehnten Auen, der kapillare Aufstieg des Grundwassers
+
(GW2MPS) einen deutlichen Einfluss auf die Bodenspeicherfüllung. Um dieser Tatsache gerecht zu
+
werden, wird der noch freie Mittelporenspeicher (deltaMPS), welcher sich aus der Differenz des
+
maximalen Mittelporenspeichers mit dem aktuellen Mittelporenspeichervolumen ergibt, mit
+
einem empirisch ermittelten Faktor multipliziert. In die Berechnung dieses
+
Faktors geht der Kalibrierungskoeffizient ''gwCapRise'' und die relative Sättigung des MPS
+
(ThetaMPS) ein:
+
  
  
Line 1,375: Line 1,122:
  
  
Der Kalibrierungskoeffizient ''gwCapRise'' kann dabei Werte von Null bis unendlich
+
The calibration coefficient ''gwCapRise'' can take values from zero to infinite. However, the capillary elevation is forbidden when the coefficient takes the value zero.
annehmen, wobei durch Belegung des Koeffizienten mit 0 der kapillare Aufstieg generell untersagt wird.
+
  
  
 
----
 
----
 
  
 
=== Lateral Routing ===
 
=== Lateral Routing ===
  
Das laterale Flächenrouting Modul beschreibt die Übergabe des Wassers innerhalb einer
+
The lateral routing module describes the water transfer within a flow cascade from HRU to HRU from the upper catchment area until the receiving stream. Since the retention mechanisms of the runoff are described by the other process modules, here only the HRU‘s influxes and discharges are allocated. The water transfer between the HRUs are seen as n:1 relation. Thus, an HRU can have several influxes but only one discharge. The order of the HRUs as receivers is determined by the topologic ID of the HRU dataset. In the HRU dataset it is also determined which HRUs finally drain in the receiving stream.  
Fließkaskade von HRU zu HRU, vom oberen Einzugsgebiet bis zum Vorfluter. Da die
+
Rückhaltemechanismen der Abflussbildung durch die anderen Prozessmodule beschrieben
+
werden, erfolgt hier lediglich die Zuordnung der Zu- und Ausflüsse einer HRU. Dabei wird
+
die Wasserübergabe zwischen den HRU als eine n:1 Beziehung verstanden. Somit kann ein
+
HRU mehrere Zuflüsse aber nur ein Ausfluss haben. Welche HRU nun der nächste Empfänger ist,
+
wird anhand der topologischen ID des HRU-Datensatzes bestimmt. Im HRU-Datensatz ist ebenfalls festgelegt,
+
welche HRUs schließlich in den Vorfluter entwässern.
+
  
  
Line 1,398: Line 1,136:
 
=== Reach Routing ===
 
=== Reach Routing ===
  
Das Reach Routing Modul beschreibt die Fließvorgänge im Gerinne mittels eines
+
The Reach Routing module describes the flow phenomena in the channel via a cinematic wave-like normal mode  and the calculation of the rapidity of flow according to MANNING & STRICKLER. The only parameter (TA) that needs to be set is a routing coefficient which must be set by the user. It represents the travel time of the discharge wave which moves from the channel to the runoff after a precipitation event. Its value as well as the stream’s rapidity of flow (v) and the flow length (fl) are needed for the calculation of a runoff retention coefficient (Rk).  
kinematischen Wellenansatz und der Berechnung der Fließgeschwindigkeit nach MANNING &
+
STRICKLER. Der einzige einzustellende Parameter (TA) ist ein
+
vom Anwender zu bestimmender Routingkoeffizient. Er repräsentiert die Laufzeit der
+
Abflusswelle, welche sich nach einem Niederschlagsereignis im Gerinne bis zum
+
Gebietsauslass bewegt. Sein Wert geht neben der Fließgeschwindigkeit
+
des Gewässers (v) und der Fließlänge (fl) in die Berechnung eines
+
Abflussrückhaltekoeffizienten (Rk) ein.
+
  
  
Line 1,411: Line 1,142:
  
  
Zuvor ist jedoch die Fliessgeschwindigkeit (v<sub>new</sub>) mit dem
+
At first, the rapidity of flow (v<sub>new</sub>) with the roughness factor by Manning (M), the slope of the river bed (I) and the hydraulic radius (Rh) need to be set, however. The hydraulic radius (Rh) in turn is calculated from the cross section of the river part where the water flows through (A), from the flow passage (q), the rapidity of flow (v) and the river width (b). For this approach, an initial rapidity of flow (v<sub>init</sub>) of 1 m/s is assumed, which is then iteratively abgeglichen with the new calculated rapidity of flow (v<sub>new</sub>) until the deviation of both speeds are less than 0,001 m/s.  
Rauhigkeitsfaktor von Manning (M), dem Gefälle des Flussbettes (I) und dem hydraulischen
+
Radius (Rh) zu bestimmen.
+
Der hydraulische Radius wird wiederum mit dem durchflossenen Querschnitt (A)des Flussabschnittes, berechnet aus Durchfluss (q) und Fliessgeschwindigkeit (v) und der Flussbettbreite(b) berechnet.
+
Bei diesem Ansatz wird zunächst eine Ausgangsgeschwindigkeit (v<sub>init</sub>) von 1
+
m/s angenommen, welche dann iterativ mit der neu berechneten Fließgeschwindigkeit (v<sub>new</sub>)
+
abgeglichen wird, bis die Abweichung der beiden Geschwindigkeiten einen Wert kleiner als
+
0,001 m/s beträgt.
+
  
  
Line 1,427: Line 1,151:
  
  
Schließlich wird mit dem ermittelten Ausflussrückhaltekoeffizienten (Rk) der Ausfluss des
+
Finally, the discharge of the particular river part (q<sub>act</sub>) is calculated with the generated runoff retention coefficient (Rk).  
jeweiligen Flussabschnittes (q<sub>act</sub>) berechnet.
+
  
  
Line 1,434: Line 1,157:
  
  
Je höher der angenommene Wert von TA ist, desto schneller bewegt sich die Abflusswelle
+
The higher the assumed value of TA, the faster the discharge wave moves within a particular period and the less water remains in the channel. The theoretical value range therefore corresponds to the one of positive numbers.
innerhalb eines bestimmten Zeitabschnittes und umso weniger Wasser verbleibt im Gerinne.
+
Der theoretische Wertebereich entspricht somit dem der positiven Zahlen.
+

Latest revision as of 19:10, 18 July 2019

The hydrologic model system J2000 offers a physical-based modeling of the water balance of big catchment areas. In addition to the simulation of hydrologic processes, which influence the runoff and its concentration in the upper meso- and macro scale, the modeling system contains routines that help to regionalize the punctual available climate values and precipitation values quite safely. Furthermore, the calculation of the real evaporation, with which the calculation is carried out area-differentiated in consideration of the evaporation patterns of different land use classes, is integrated into the model. Since the model shall be suitable for the modeling of big catchment areas of more than 1000 km², it is ensured that the modeling can be carried out by means of the available base data on the national scale. The simulation of the different hydrologic processes is carried out in program modules that are completed and as far as possible independent of each other. This offers to edit, substitute or add individual modules without the necessity to structure the entire model anew. The modeled total runoff is built up on the sum of the individual runoff components that are separately calculated during the modeling. The modeling system differentiates between four runoff components according to their specific origin. The component with the highest temporal dynamics is the fast direct runoff (RD1). It consists of the runoff of sealed areas, of snow water, which drains within snow layers, and of surface runoff when saturation areas develop. The slow direct runoff component (RD2), which can be regarded as similar to the lateral hypodermic runoff within the soil zone, reacts insignificantly slower. Two further basis runoff components can be distinguished. On the one hand, there is the fast basis runoff component (RG1) which simulates the runoff from surface-near well permeable weathering zones. On the other hand, there is a slow basis runoff component (RG2) which results as runoff from joint aquifer or homogeneous loose rock aquifer. The allocation of the precipitation water to the individual runoff components is carried out in the model on the basis of area parameters which can be derived from the applied base data. In addition to the relief shape, specific soil parameters, like the hydraulic conductivity of individual soil horizons, have an important influence. The calculation of the runoff components’ different concentration times is carried out in consideration of the hydraulic characteristics of the storages in which the individual components drain. Additionally, variable influences like the preceding soil moisture of the area are considered while modeling.


Contents

GUI

After starting JAMS, the main window opens which contains several tabulators:

Basic Settings

Main1 en.jpg

  • Workspace directory: Sets the working directory. It has to contain three more folders: Parameter (for all parameter files), Data (for all data files) and Output (for all output files).
  • Time interval: The time interval for the model run is selected.
  • Caching: The results of some compute-intensive processes can be temporarily stored in hard disk and reused for further model runs. Therefore the model run is slightly faster. Attention: This feature is not completely safe yet and should only be applied by experienced users.

Diagrams and Maps

PlotsansMaps1 en.jpg

  • Runoff plot: Activates the graphical display of the runoff modeled and measured during model run.
  • Soil moisture plot: Activates the graphical display of the relative soil moisture during model run.
  • Snow water equivalent: Activates the graphical display of the snow water equivalent during model run.
  • Map enable: Enables the output of a cartographic display of selected state variables.
  • Map attributes: A semicolon-separated list of state variables which are to be cartographically displayed.
  • Map3D enable: Enables a 3D output of a cartographic display of selected state variables.
  • Map3D attributes: A semicolon-separated list of state variables which are to be cartographically displayed (in 3D).

Initialising

Initialisierung1 en.jpg

  • Multiplier for field capacity : The maximum storage capacity of the middle pore storages (MPS) can be increased (value > 1) or decreased (value < 1).
  • Multiplier for air capacity: The maximum storage capacity of the large pore storages (LPS) can be increased (value > 1) or decreased (value < 1).
  • initRG1: relative filling of the upper groundwater storage at beginning of model run (1 filled to capacity, 0 empty).
  • initRG2: relative filling of the lower groundwater storage at beginning of model run (1 filled to capacity, 0 empty).

Regionalization

Regionalisierung3 en.jpg

  • number of closest stations for regionalization: Number n of stations used to calculate the value of an HRU (n stations which are closest to the HRU are selected).
  • Power of IDW function for regionalization: Weighting factor used to exponentiate the distance of each station to the respective HRU.
  • elevation correction on/off: Activates the elevation correction of the data values.
  • r-sqrt threshold for elevation correction: Threshold value for the elevation correction of the data values. If the coefficient of determination of the regression relation between measured data of the stations and station elevations is smaller than this value, an elevation correction is not carried out.

Those settings (i.e. minimum temperature, maximum temperature, medium air temperature, precipitation, absolute air moisture, wind speed, sunshine duration) can be adjusted for every single input variable.

Radiation

Radiation2 en.jpg

  • flowRouteTA [h]: runtime of the outflow route

Interception

Interception en.jpg

  • a_rain [mm]: Maximum storage capacity of the interception storage per m2 leaf area for rain
  • a_snow [mm]: Maximum storage capacity of the interception storage per m2 leaf area for snow

Snow

Schnee en.jpg

  • Component active: Activates the snow module.
  • baseTemp [°C]: Temperature limit value for snow precipitation.
  • t_factor [mm/°C]: Temperature factor for calculation of snowmelt runoff.
  • r_factor [mm/°C]: Rain factor for calculation of snowmelt runoff.
  • g_factor [mm]: Soil heat flux factor for calculation of snowmelt runoff.
  • snowCritDens [g/cm³]: critical snow density
  • ccf_factor [-]: factor for calculation of the cold content of snow cover

Soilwater

Boderwasser1 en.jpg

  • MaxDPS [mm]: maximum hollow reserve
  • PolRed [-]: polynomial reduction factor for reduction of potential evaporation with limited water supply.
  • LinRed [-]: linear reduction factor for reduction of potential evaporation with limited water supply.

(Note: PolRed and LinRed do not represent alternatives. Only one can be attributed a value, the other one has to be 0.)

  • MaxInfSummer [mm]: maximum infiltration during summer period
  • MaxInfWinter [mm]: maximum infiltration during winter period
  • MaxInfSnow [mm]: maximum infiltration with snow cover
  • ImpGT80 [-]: relative infiltration capacity of areas with a sealing degree of > 80%
  • ImpLT80 [-]: relative infiltration capacity of areas with a sealing degree of < 80%
  • DistMPSLPS [-]: calibration coefficient for distribution of infiltration on soil storages LPS and MPS
  • DiffMPSLPS [-]: calibration coefficient for the definition of the diffusion amount of the LPS storage in relation to MPS at the end of a time step
  • OutLPS [-]: calibration coefficient for definition of LPS outflow
  • LatVertLPS [-]: calibration coefficient for distribution of the LPS outflow on the lateral (interflow) and vertical (percolation) component
  • MaxPerc [mm]: maximum percolation rate
  • ConcRD1 [-]: retention coefficient for direct runoff
  • ConcRD2 [-]: retention coefficient for interflow

Groundwater

Grundwasser en.jpg

  • RG1RG2dist [-]: calibration coefficient for distribution of percolation water
  • RG1Fact [-]: factor for runoff dynamics of RG1
  • RG2Fact [-]: factor for runoff dynamics of RG2
  • CapRise [-]: factor for the setting of capillary rise

Routing in the Flow

Reachrouting en.jpg

  • flowRouteTA [h]: runtime of the outflow route





When all parameters are set, the modeling is initiated via the button [Run]. A window opens which contains different tabulators.

The tab [JAMSProgress] represents general information about the current model run in text form. If an error or problem occurs during the implementation, an error message possibly appears in this view. Furthermore, different efficiency criteria are given after the completion of the model run. These are:

e2 ... Nash-Sutcliff-efficiency with power 2 (classic form)

e1 ... modified Nash-Sutcliff-efficiency (differences are not squared but their absolute values are applied)

log_e2 ... modified Nash-Sutcliff-efficiency (the logarithm of the values are taken)

log_e1 ... modified Nash-Sutcliff-efficiency (the logarithm of the values are taken; differences are not squared but their absolute values are applied)

ioa2 ... index of agreement according to WILLMOT

ioa1 ... modified index of agreement according to WILLMOT (differences are not squared)

r2 ... coefficient of determination

grad ... slope of the regression line

wr2 ... coefficient of determination, weighted with the slope of the regression line

dsGrad ... double sum gradient

AVE ... absolute volume error

RSME ... root mean square error

pbias ... relative percentage volume error

The further tabs contain the plots and maps selected beforehand.



Input files

Input files are the temporal static parameters as well as temporal variable input data (climate values, precipitation values, runoff values). These are read in as ASCII-Files.

Generally, for all input files it is necessary that:

  • the separator is the tabulator
  • the decimal separator is the dot



Data

The modeling system J2000 expects the following data files for the model initialization:

name description unit
ahum.dat absolute humidity g/cm3
orun.dat measured flow passage at the runoff m3/s
rain.dat measured amount of precipitation mm
rhum.dat relative humidity  %
sunh.dat sunshine duration h
tmax.dat maximum temperature °C
tmean.dat mean air temperature °C
tmin.dat minimum temperature °C
wind.dat wind speed m/s


Each data file has the following structure (demonstrated here for the example of rainfall):

line description
#rain.dat rainfall
@dataValueAttribs
rain 0 9999 mm name of the data series, smallest possible value, biggest possible value, unit
@dataSetAttribs
missingDataVal -9999 value to mark missing data values
dataStart 01.01.1979 7:30 date and time of the first data value
dataEnd 31.12.2000 7:30 date and time of the last data value
tres d temporal resolution of the data (here: days)
@statAttribVal
name stat1 stat2 names of the gaging stations
ID 1574 1513 numeric name of the gaging stations (ID)
elevation 525 498 elevation station1, elevation station2
x 4402310 4422269 easting station1, easting station2
y 5620906 5616856 northing station1, northing station2
dataColumn 1 2 number of the particular column in the data part
@dataVal beginning of data part
01.01.1979 07:30 0.8 0.1 date, time, value station1, value station2
...
31.12.2000 07:30 1.1 0 date, time, value station1, value station2
#end of rain.dat end of data part

Parameters

J2000 expects the following parameter files for the model initialization:

  • landuse.par – land use
  • hgeo.par - hydrogeology
  • soils.par – soil types
  • reach.par – net of water course
  • hrus.par – parameter of the derived Hydrological Response Units (HRUs)


Generally, all parameter files have the following structure (demonstrated here for the example of the net of water course; see also the figure on the right):

Sample of a parameter file
line description
1 #reach.par
2 name of variable
3 smallest possible value
4 biggest possible value
5 unit
6 beginning of data part
n #end of reach.par -> marks the end of the parameter file (here: land use)


  • landuse.par
parameter description
LID land use ID
albedo albedo in %
RSC0_1 minimum surface resistance under water-saturated conditions in January
...
RSC0_12 minimum surface resistance under water-saturated conditions in December
LAI_d1 leaf area index (LAI) at the beginning of the vegetation period
...
LAI_d4 leaf area index (LAI) at the end of the vegetation period
effHeight_d1 effective vegetation height at the beginning of the vegetation period
...
effHeight_d4 effective vegetation height at the end of the vegetation period
rootDepth root depth
sealedGrade sealed grade


  • hgeo.par
parameter description
GID hydrogeology ID
RG1_max maximum storage capacity of the upper ground-water reservoir
RG2_max maximum storage capacity of the lower ground-water reservoir
RG1_k storage coefficient of the upper ground-water reservoir
RG2_k storage coefficient of the lower ground-water reservoir


  • reach.par
parameter description
ID channel part ID
length length
to-reach ID of the underlying channel part
slope slope
rough roughness value according to MANNING
width width


  • soils.par
parameter description
SID soil type ID
depth thickness of soil
kf_min minimum permeability coefficient
depth_min depth of the horizon above the horizon with the smallest permeability coefficient
kf_max maximum permeability coefficient
cap_rise Boolean variable, that allows (1) or restricts (0) capillary ascension
aircap air capacity
fc_sum useable field capacity
fc_1 ...22 useable field capacity per decimeter of profile depth


  • hrus.par

Parameters of the given Hydrological Response Units (HRUs)

parameter description
ID HRU ID
x easting of the centroid point
y northing of the centroid point
elevation mean elevation
area area
type drainage type: HRU drains in HRU (2), HRU drains in channel part (3)
to_poly ID of the underlying HRU
to_reach ID of the adjacent channel part
slope slope
aspect aspect
flowlength flow length
soilID ID soil class
landuseID ID land use class
hgeoID ID hydrogeologic class

Regionalization of Climate and Precipitation Data

General Processing

1. Calculation of the linear regression between the daily station values and the elevation of the stations. . Thereby, the coefficient of determination (r2) and the slope of the regression line (bH) of this relation is calculated. It is assumed that the value (MW) depends linearly on the terrain elevation (H); according to:


 MW = a_H + b_H \cdot H


The unknown aH and bH are defined according to the Gaussian method of the smallest squares:


 b_H = \frac{\sum_{i=1}^{n} (H_i - \overline{H})(MW_i - \overline{MW})}{\sum_{i=1}^{n} (H_i - \overline{H})^2}


 a_H = \overline{MW} - b_H \cdot \overline{H}


The correlation coefficient of the regression is calculated according to the following equation:


 r = \frac{\sum_{i=1}^{n} (H_i - \overline{H})(MW_i - \overline{MW})}{\sqrt{\sum_{i=1}^{n} (H_i - \overline{H})^2 \cdot \sum_{i=1}^n (MW_i - \overline{MW})^2}}


2. Definition of the n gaging stations which are nearest to the particular HRU.. The number n which needs to be entered during the parameterization is dependent on the density of the station network as well as on the position of the individual stations.

For each dataset the number of stations (n) that shall be considered for the regionalization needs to be determined in advance. Furthermore, a weighting factor (pIDW) needs to be given. The n-nearest stations are defined according to the following calculation rule with the help of the eastings and northings of all stations as well as the coordinates of the particular HRU. The first step is to calculate the distance (Dist(i)) of each station to the area of interest:


 Dist(i) = \sqrt{(RW_{stat(i)} - RW_{DF})^2 + (HW_{stat(i)} - HW_{DF})^2}


with

RW ... easting of the station i...n, or the HRU (DF)

HW ... northing of the station i...n, or the HRU (DF)


The n stations with the smallest distance to the particular HRU are taken from the distances calculated according to the description above and are then used for further calculations. The distances of these stations are converted to weighted distances (wDist(i)) via potentialization with the weighting factor pIDW. With the help of this weighting factor the influence of nearby stations can be increased and the influence of more distanced stations can be decreased. Good results can be achieved with values of 2 or 3 for the pIDW.


3. Via an Inverse-Distance-Weighted (IDW) the weightings of the n stations are defined dependently on their distances for each HRU. Via the IDW-method the horizontal variability of the station data is taken into account according to its spatial position. The calculation is carried out according to the following equation:


 W(i) = \frac{\left( \frac{\sum\nolimits^n_{i=1} wDist(i)}{wDist(i)} \right)}{\sum^n_{i=1}\left( \frac{\sum\nolimits^n_{i=1} wDist(i)}{wDist(i)} \right)}


4. The calculation of the data value for each HRU with the weightings from point 3 and an optional elevation correction for the consideration of the vertical variability. The elevation correction is only carried out when the coefficient of determination (calculated under point 1) goes beyond the threshold entered by the user. The calculation without the optional elevation correction is carried out according to the following equation:


 DW_{DF} = \sum^n_{i=1} MW(i) \cdot W(i)


For data values that possess an elevation effect, an elevation correction for the measured values is carried out additionally when the values have a tight regression relation (r² greater than the threshold entered by the user). The following equation is applied for the calculation:


 DW_{DF} = \sum^n_{i=1} \left( ( \Delta H(i) \cdot b_H + MW(i)) \cdot W(i) \right)


with ΔH(i) ... elevation difference between station i and the HRU

bH ... slope of the regression line

Specific Correction Method and Calculation Method for the Individual Datasets

Precipitation

Correction of the Moistening Error and Evaporation Error

The correction of the moistening error and evaporation error is carried out according to researches with the help of Hellmann-rainfall gauges by RICHTER (1995). In order to offer a constant correction of the error (which results from the moistening and evaporation loss), logarithmic functions were approximated separately for the summer half year (May-October) and winter half year (November-April) to the discrete tabulated values in the modeling system 2000. If the precipitation height goes beyond the value of 9 mm the moistening error and evaporation error is set to a constant value.

The moistening error and evaporation error for precipitation heights ≤9.0 mm is calculated according to the following equates:

 
BV_{Som}=  0.08 \cdot \ln{N} + 0.225 \; \; \; \mathrm{[mm]}


BV_{Win}=  0.05 \cdot \ln{N} + 0.13 \; \; \; \mathrm{[mm]}


For precipitation heights >9.0 mm the moistening and evaporation error is:

 
BV_{Som} = 0.47 \; \; \; \mathrm{[mm]}


BV_{Win} = 0.30 \; \; \; \mathrm{[mm]}


Correction of the Wind Error

The quantification of the precipitation error that is to be expected is carried out according to the researches by RICHTER (1995) as function of the precipitation height and the position of the station. It is assumed that the relative wind error (KRWind) for rainfall as well as snowfall behaves inversely proportional to the precipitation heights (Pm). The calculation is carried out according to the following equations:


KR_{Wind}=
\begin{cases}
0.1349 \cdot P_m^{-0.494} & \mathrm{f\ddot{u}r} \; \; T_{mean} > T_{crit} \\
0.5319 \cdot P_m^{-0.197} & \mathrm{f\ddot{u}r} \; \; T_{mean} \le T_{crit} 
\end{cases}
\; \; \mathrm{[-]}


The calculation of the precipitation heights corrected for evaporation error and wind error is then carried out according to the following equation:



P_{korr} = P_m + P_m \cdot KR_{Wind} + BV_{Som}, BV_{Win} \, \, \, \mathrm{[mmd^{-1}]}


Temperature

The modeling system J2000 requires values of the day minimum temperature as well as the day maximum temperature. From these values the mean day temperature (Tmean) is calculated as mean average.

The regionalization of the punctual values Tmin,Tmax and Tmean is carried out according to the rule described above with optional elevation correction.



Wind Speed

The wind speed is not given as direct value from the DWD but as wind force observations (WS) in Beaufort. The conversion of the wind force into the wind speed at 2 m height (v2) [in ms-1] can be carried out according to the following equation:



v_2 = 0.6 \cdot WS^{1.5} + 0.1 \; \; \; \mathrm{[ms^{-1}]}


This conversion needs to be carried out externally, because J2000 expects the wind speed in m/s.

The conversion of the wind speed at 2 m height to other heights – as it is partly required during the evaporation calculation and the wind correction of the precipitation – is carried out during the modeling according to the following equation:



v_z = \frac{v_z}{\left( \frac{4.2}{\ln z + 3.5}\right)} \; \; \; \mathrm{[ms^{-1}]}


The interpolation of the punctual values to the area is carried out according to the method described above. The modeling system allows the inclusion of the optional elevation correction for the regionalization of the wind speed. However, this option should be handled with care, since the wind speed is very dependent on the station’s position.


Sunshine Duration

The daily sunshine duration (S) [in h], is provided as value by the DWD. The interpolation of the station values to the area is carried out according to the procedure described above – without additional calculations or elevation corrections.


Relative Humidity

The relative humidity (U) [in %] can be taken from the DWD as daily values. A direct regionalization of the values is not recommended since they depend on two parameters: the absolute moisture content and the maximum possible moisture content of the air for a particular temperature. Thus, in the J2000 modeling system’s regionalization module the absolute humidity (a) [in g cm-3] is calculated from the relative humidity and the temperature at the station. It is then regionalized and afterwards the absolute humidity is converted to the relative humidity, again. For this purpose, several calculation steps are necessary which are shown below.


Calculation of the Saturation Vapor Pressure

The saturation vapor pressure (es(T)) [in hPa] is calculated according to the Magnus formula with the coefficients by SONNTAG (1994) for the air temperature (T) [in °C]:

 
e_s(T) = 6.11 \cdot e^{\left( \frac{17.62 \cdot T}{243.12 + T} \right)}
\; \; \; \mathrm{[hPa]}


Calculation of the Maximum Humidity

The maximum humidity (A) is calculated against the saturation vapor pressure (es(T)) and the air temperature (T) according to:


 
A(T) = e_s(T) \cdot \frac{216.7}{T + 273.15}
\; \; \; \mathrm{[g cm^{-3}]}


Calculation of the Absolute Humidity

The real water content of the air, the absolute humidity (a) [in gcm-3], results from the maximum humidity (A)[in gcm-3] and the relative humidity (U) [in %]:



a = A \cdot \frac{U}{100} 
\; \; \; \mathrm{[g cm^{-3}]}


The so calculated station values of the absolute humidity are then regionalized according to the procedure described above and are converted into relative humidity afterwards. The advantage of this rather complex regionalization method is that, in addition to its higher physical relation, the absolute humidity is more dependent on heights than the relative humidity. Thus, the elevation effect can be used for the regionalization according to the procedure described above. After the regionalization of the absolute humidity, the conversion into relative humidity can be carried out. However, instead of the temperature of the station, the previously regionalized average air temperature Tmean of the corresponding discrete sub-area is set.



Calculation of Evapotranspiration

The calculation of the Bestandverdunstung is carried out in J2000 according to the Penman-Monteith equation in several steps in regard to numerous parameters. Since the calculation is very complex and time-consuming, it was sourced out into the preprocessing part of the modeling system. This outsourcing is possible because most of the parameters that are used for the calculation are derived from the input data and are thus seen as independent of the modeled dynamic of the water supply. The only parameter that is used in the calculation but can only be defined during the modeling is the current soil moisture. Its reducing influence is taken into account via appropriate reduction functions during the modeling. Two evaporation values are generated for each time interval (1 day) during the calculation of the evaporation. These values are a day value (index d) and a night value (index n). This distinction is necessary because the net radiation balance is very different at day or night. Furthermore, the evaporation behavior of the vegetation is different at day or night. In the night the plants’ stomata are closed, the surface resistance is unequally higher than at daytime. The calculation for the day and for the night is carried out according to the following equations, whereby the total value of the evaporation for the particular time step results as sum of these two values.


 ETP_d = \frac{1}{L_d} \cdot{ \frac{s_d \cdot {(R_{N_d} - G_d)}+ \rho \cdot{c_P} \cdot\frac{e_{s_d} - e_d}{r_a}}{s_d + \gamma _d \cdot{\left(1+ \frac{r_{s_d}}{r_a} \right)}}} \cdot{\left(\frac{S_0}{24} \right)}


ETP_n = \frac{1}{L_n} \cdot{ \frac{s_n \cdot {(R_{N_n} - G_n)}+ \rho \cdot{c_P} \cdot\frac{e_{s_n} - e_n}{r_a}}{s_n + \gamma _n \cdot{\left(1+ \frac{r_{s_n}}{r_a} \right)}}} \cdot{\left(1- \frac{S_0}{24} \right)}


with:

Ld,n ... latent heat of evaporation [Wm-2] per [mmd-1]

sd,n ... slope of the vapor pressure curve [hPaK-1]

RN d,n ... net radiation [Wm-2]

Gd,n ... soil heat flux [Wm-2]

ρ ... density of the air [kgm-3]

cp ... specific heat capacity of the air for constant pressure [Jkg-1K-1]

esd,n ... saturation vapor pressure [hPa]

ed,n ... vapor pressure [hPa]

ra ... aerodynamic resistance of the land cover [sm-1]

γ d,n ... psychrometer constant [hPaK-1]

rsd,n ... surface resistance of the land cover [sm-1]

S0 ... astronomic possible sunshine duration [h]


The air temperatures (Td e Tn), which become necessary for the calculation of the net radiation balance, are derived from the values of the minimum temperature and maximum temperature as well as from the daily mean value:


 T_d = \frac{T_{max} + T_{mean}}{2} \, \, \, \mathrm{[C]}


 T_n = \frac{T_{min} + T_{mean}}{2} \, \, \, \mathrm{[C]}


The latent heat of evaporation (L) is calculated approximately according to:

L_d = 28.9 - 0.028 \cdot{T_d}

 \left[\frac{W}{m^2} \, \mbox{pro} \, \frac{\mathrm{mm}}{\mathrm{d}}\right]

L_n = 28.9 - 0.028 \cdot{T_n}


The saturation vapor pressure (es(T)) of the air for the temperature (T) is calculated according to the Magnus formula with the coefficients by Sonntag:


e_s (T)_d = 6.11 \cdot e^{\frac{17.62 \cdot{T_d}}{243.12 + T_d}} \, \, \, \mathrm{[hPa]}


e_s (T)_n = 6.11 \cdot e^{\frac{17.62 \cdot{T_n}}{243.12 + T_n}} \, \, \, \mathrm{[hPa]}


The real vapor pressure (e) results from the saturation vapor pressure and the relative air humidity (U in [%]):


e_d=e_s(T)_d \cdot \frac{U}{100} \, \, \, \mathrm{[hPa]}


e_d=e_s(T)_d \cdot \frac{U}{100} \, \, \, \mathrm{[hPa]}


The slope of the saturation vapor pressure curve (s) calculated from the saturation vapor pressure (es(T)) and the air temperature (T):


 s_d= e_s(T)_d \cdot \left( \frac{4284}{(243.12+T_d)^2} \right)

 \left [ \frac{\mathrm{hPa}}{\mathrm{K}} \right]

 s_n= e_s(T)_n \cdot \left( \frac{4284}{(243.12+T_n)^2} \right)


The air pressure (p) at the height (z) is generated from the adapted barometric formula:


p_{z_d}=p_0 \cdot e^{- \left( \frac {g}{R \cdot Tabs_d} \cdot z \right)} \, \, \, \mathrm{[hPa]}


p_{z_n}=p_0 \cdot e^{- \left( \frac {g}{R \cdot Tabs_n} \cdot z \right)} \, \, \, \mathrm{[hPa]}


with:

p0 ... air pressure at sea level (= 1013) [hPa]

g ... gravitational acceleration (= 9.811) [ms-1]

R ... universal gas constant (= 8314.3) [Jkmol-1K-1]

Tabs ... absolute air temperature [K]


The psychrometer constant (γ) results from:


 \gamma_d = \frac{c_P \cdot p_d}{0.622 \cdot L_d \cdot 86400}

 \left[ \frac{\mathrm{hPa}}{\mathrm{K}} \right]

 \gamma_n = \frac{c_P \cdot p_n}{0.622 \cdot L_n \cdot 86400}


whereby 0.6322 is the relation of the molar weight of water vapor and dry air.


Calculation of the Net Radiation Balance

The energy that is necessary for the evaporation is provided by radiation. The net radiation balance for each day needs to be defined for the calculation of the amount of energy that results from the energy balance segments. The energy fluxes that add to the net radiation balance are: the extraterrestrial radiation, the global radiation, the atmospheric backradiation, the longwave radiation as well as the soil heat flux.

The extraterrestrial radiation (R0) is calculated against the latitude as well as the annual variation of the insolation angle of the sun (declination):


R_0= \frac {1}{8.64} \cdot \left[245 \cdot (9.9 + 7.08 \cdot \sin{\zeta})+0.18 \cdot (\phi - 51) \cdot (\sin{\zeta} - 1) \right] \, \, \, \left[\frac{\mathrm{W}}{\mathrm{m^2}} \right]


with the angle ζ and the factor (1/8.64) for the conversion of Jcm-2 to Wm-2, as well as from latitude φ to degree.

The global radiation (RG) is calculated on the basis of the extraterrestrial radiation R0 and the cloudiness. The degree of cloudiness is here approximated from the relation of the measured sunshine duration to the astronomic possible sunshine duration for unclouded sky (S0) with the help of an empirical relation according to the Ångström formula. RG is calculated according to:


 R_G = R_0 \cdot \left( a + b \cdot \frac{S}{S_0} \right) \, \, \, \left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]


The calculation of the astronomic possible sunshine duration (S0) in the annual variation is carried out against the latitude:


 S_0 = 12.3 + \sin{ \zeta} \cdot \left( 4.3 + \frac{\phi -51}{6} \right) \, \, \, \mathrm{[h]}

with

ζ = 0.0172*JT - 1.39

JT ... Julian day [1...365;366]

φ ... latitude


The longwave radiation of the earth’s surface and the atmospheric backradiation are calculated together as effective longwave radiation (RL). The black body radiation according to Boltzmann, the degree of cloudiness and an empiric function of the air‘s content of water vapor are part of the calculation:


 R_{L_d} = \sigma \cdot T_{abs_d}^4 \cdot \left( 0.1 + 0.9 \cdot \frac{S}{S_0} \right) \cdot \left( 0.34 - 0.044 \cdot \sqrt{e_d} \right)

\left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]

 R_{L_n} = \sigma \cdot T_{abs_n}^4 \cdot \left( 0.1 + 0.9 \cdot \frac{S}{S_0} \right) \cdot \left( 0.34 - 0.044 \cdot \sqrt{e_n} \right)


with

σ ... Stefan-Boltzmann-constant (=5.67*10-8) [Wm-2K-4]

Tabsd,n ... absolute air temperature [K]

ed,n ... vapor pressure of the air [hPa]


The net radiation results from global radiation (RG) reduced by the albedo (α) of the particular land use type as well as from the effective longwave radiation (RL):


 R_{N_d} = (1- \alpha) \cdot R_G - R_{L_d}

 \left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]

 R_{N_n} = 0 - R_{L_n}


The soil heat flux (G) is then calculated according to the very much simplified relation:


 G_d = 0.2 \cdot R_{N_d}

 \left[ \frac{\mathrm{W}}{\mathrm{m^2}} \right]

 G_d = 0.2 \cdot R_{N_n}


Calculation of Live Stock Specific Parameters

The influence of different vegetation forms on the evaporation is taken into account via two resistances in the Penman-Monteith-approach: the surface resistance (rs) and the aerodynamic resistance (ra). For the calculation of the resistances, land use-specific parameters are needed. These are: the leaf area index LAI, the effective vegetation height (eff.Bh.), and the surface resistances for water saturation. Their values are shown for different land cover classes in the following table:


Land use parameters of different land cover classes


Furthermore, the live stock specific albedo values are contained which are used for the calculation of the net radiation balance. The leaf area index and the effective vegetation height are represented as distinctive points (d1...d4) of the year. The points represent the beginning of the vegetation period (d1), the reaching of the maximum development or ripeness (d2), the ripeness period until the point d3 and then the decrease until the end of the vegetation period (d4). The individual points are represented by the Julian days (d1 = 110, d2 = 150, d3 = 250, d4 = 280) for areas at about 400m height. For other heights (z) these points are approximated according to the following empirical relation:


 d_1(z)=d_1(400)+0.025 \cdot (z-400)

 d_2(z)=d_2(400)+0.025 \cdot (z-400)

 d_3(z)=d_3(400)+0.025 \cdot (z-400)

 d_4(z)=d_4(400)+0.025 \cdot (z-400)


The values between the individual points are interpolated linearly. The aerodynamic resistance (ra) of the particular land use type can be calculated according to the following equation:


 ra = \frac{4.72 \cdot \left( \ln{ \left( \frac{z_m}{z_0} \right)} \right)^2}{1 + 0.54 \cdot v_2} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


with

zm ... measuring height of the wind speed (=2 m) [m]

z0 ... aerodynamic roughness length (≈ 0.125*effective vegetation height) [m]

v2 ... wind speed at 2 m height [ms-1]


The aerodynamic resistance for effective vegetation heights of equal or more than 10 m can be calculated according to the following simplified equation:


 ra = \frac{64}{1 + 0.54 \cdot v_2} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


The surface resistance of the particular use type is calculated according to the following equation:


 rs_d = \left( \frac{1-A}{rsc} + \frac{A}{rss} \right)^{-1} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


 rs_n = \left( \frac{LAI}{2500} + \frac{1}{rss} \right)^{-1} \, \, \, \left[ \frac{\mathrm{s}}{\mathrm{m}} \right]


with

rsc ... surface resistance [sm-1]

A ... 0.7LAI [-]

rss ... surface resistance of uncovered soil [sm-1]


Specific Adaptation of Evaporation during the Modeling


Furthermore, slope and aspect significantly influence the evaporation amount and are therefore taken into account by the following correction factors:


 Korr_{ETP} = (0.01605 \cdot \sin{( \delta -90)} - 0.00025 ) \cdot \alpha + 1

with

δ ... aspect from north in degree

α ... slope in degree


The evaporation of slopes (ETP') is calculated with the help of this correction factor:


 ETP' = ETP \cdot Korr_{ETP} \, \, \, \mathrm{[mmd^{-1}]}


For the consideration of the current soil humidity the particular correction functions are applied. It is assumed that the vegetation can only transpire until a particular water content of the soil with the potential evaporation rate is reached. After going below this water content, the real evaporation decreases proportionally to the potential evaporation until it becomes zero at the point of the permanent wilting point. In J2000 there is a linear function with the calibration coefficient linear_reduc and a non linear procedure with the calibration coefficient poly_reduc available for the reduction:



f(\Theta)=
\begin{cases}
\left( \frac{\Theta MPS}{linear_-reduc} \right) & \mathrm{f\ddot{u}r} \, \, \,  linear_-reduc < \Theta MPS \\
\, \, \, 1 & \mathrm{sonst}
\end{cases}
\, \, \, [-]


 f(\Theta) = 10^{\left(-10 \cdot (1-sat)^{poly_-reduc} \right)} \, \, \, [-]


With the linear function it is assumed that the current ETP conforms to the potential ETP as long as the relative MPS saturation equals or is greater than the linear_reduc. If the relative MPS saturation falls below the linear_reduc, the reduction factor f(Θ) decreases linearly. Thus, linear_reduc represents a threshold that needs to be defined by the user and that can take values from 0 to 1. In contrast, the calibration coefficient poly_reduc can take all values between zero and infinite. For a small value of poly_reduc the reduction factor is also reduced for a high MPS saturation. If the values of poly_reduc increase, the potential ETP slightly decreases. For decreasing MPS saturation, a higher reduction occurs. The real evaporation is calculated with the value from the correction function against the current water content of the soil from the potential evaporation (ETP'):



 ETR = f(\Theta) \cdot ETP' \, \, \, \mathrm{[mm d^{-1}]}



Interception Module

The interception module serves the calculation of the net precipitations from the field precipitations against the particular vegetation covers and their development in the annual variation. The field precipitation is reduced by the interception part to the net precipitation via interception. Thus, net precipitation only occurs when the maximum interception storage capacity of the vegetation is exhausted. The surplus is then passed on as through falling precipitation to the following module. The maximum interception capacity (Int max) is calculated in J2000 according to the following formula:

Int_{max} = \alpha \cdot{LAI} \, \, \, \mathrm{[mm]}

with

α ... storage capacity per m2 leaf area against the precipitation type [mm]

LAI ... leaf area index of the particular land use class [-]

The parameter α has a different development, depending on the type of the intercepted precipitation (rain or snow), since the maximum interception capacity of snow is noticeably higher than of liquid precipitation. The leaf area index for the individual vegetation types of the year is calculated with the described method for each day of the time series. The emptying of the interception storage is carried out exclusively by evaporation. A special case occurs when the development of the parameter α changes from rain to snow due to the air temperature. This leads to a heavy decrease of the maximum interception storage capacity. Possible surplus is passed on as draining precipitation to the following module.


Snow Module

The snow development is subdivided into three phases in the snow module of J2000: the snow accumulation, the metamorphosis and the snow melt. The amount of snow of the total precipitation is defined via the air temperature in order to calculate the daily accumulation rate (Acc). For this purpose, it is assumed that going below a particular threshold temperature the total precipitation consists of snow and for going above a second threshold temperature the total precipitation consists of rain. In the zone between these threshold temperatures a mixed precipitation occurs. In order to define the threshold temperatures and therefore the size of the transition zone, a temperature value (Trs in °C) needs to be given which conforms to the temperature where 50% of precipitation is snow and 50% is rain. Additionally, a parameter Trans (in K) needs to be defined that is taken as the half width of the transition zone. The real snow proportion (p(s)) of the daily precipitation against the air temperature (T) is calculated according to:


 p(s) = \frac{TRS + Trans - T}{2 \cdot Trans} \, \, \, \mathrm{[mm]}


The daily amount of snow (Ns) or amount of rain (Nr) is calculated according to:


 N_s = N \cdot p(s) \, \, \, \mathrm{[mm]}


 N_r = N \cdot (1-p(s)) \, \, \, \mathrm{[mm]}


The so calculated snow water equivalent is allocated to the solid storage (SWCdry). If p(s) is less than 1.0, the resulting amount of rain is added to the liquid storage.

The resulting snow height change is calculated with the help of the density of fresh snow (ρnew):


 \Delta SH = \frac{N_s}{\rho_{new}} \, \, \, \mathrm{[mm]}


The thermal circumstances under the snow cover are taken into account with the store of cold in the snow cover in connection with the snow melt. Since melted water freezes immediately due to negative isothermal circumstances under the snow cover and thus, the runoff is stopped, the store of cold needs to reach the value zero so that the process of snowmelt begins. Consequently, negative temperatures raise the store of cold whereas positive temperatures reduce it. The calculation of the store of cold (CC) results from the product of the air temperature by a calibration parameter (coldContFac):


 CC = coldContFac \cdot T \, \, \, \mathrm{[mm]}


The snow cover can store liquid water in its pores until a certain critical density (critDens). This storage capability is lost nearly completely and irreversibly when a certain amount of liquid water proportionally to the total snow water equivalent (between 40% and 45%) is reached. This is taken into account in the modeling by the calculation of the maximum water content (WSmax) of the snow cover:


 WS_{max} = critDens \cdot snowDepth \, \, \, \mathrm{[mm]}


The critical density (critDens) needs to be given by the user. The stored water in the snow cover that goes beyond this threshold is drained:


 SMR = \left( 1- e^{(1-(\frac{critDens}{totDens}))^4} \right) \, \, \, \mathrm{[mm]}


The resulting snow water (SMR) is used as input value in the following soil module. The snow cover’s density keeps the value of the critical density until the snow cover thaws or goes back into the accumulation phase due to new snowfall.


In J2000 there are two methods available for the calculation of the potential melting rate: a simple method is based on the tight relation of air temperature and the snowmelt intensity. The potential melting rate (potMR) is calculated on the basis of air temperature, the day degree factor (ddf) and the total snow density (totSnowDens):


 potMR = ddf \cdot totSnowDens \cdot T \, \, \, \mathrm{[mm]}


The day degree factor represents an empirically generated thawing coefficient. Alternatively to the mentioned calculation formula, the potential melting rate can also be calculated via a more complex approach. In addition to the amount of precipitation (P in mm) and the air temperature, further energy fluxes (air temperature, precipitation temperature and soil temperature) are taken into account in this calculation. Since the necessary input data for this approach (e.g. precipitation intensity, heat of fusion, and wind speed) are often unavailable, they need to be calibrated. The so resulting and simplified equation only contains the temperature data, precipitation data and the calibration factors r_factor, g_factor and t_factor that need to be generated empirically.


 potMR = t_-factor \cdot T + r_-factor \cdot P + g_-factor \, \, \, \mathrm{[mm]}



Soil Water Module

The soil module is structured in process units (infiltration, evapotranspiration) and store units (middle pore storage = MPS, large pore storage = LPS, depression storage). At first, the infiltration capacity against the water saturation in the soil and a maximum infiltration rate is estimated with the help of an empirical method. The maximum infiltration rate functions as threshold. When this threshold is crossed, the surplus water is stored in the depression storage or lead into the direct surface runoff. The maximum amount of water that can be held back in surface depressions is seen as maximum depression storage (maxDepStor). Furthermore, the depression storage is dependent on the surface structure as well as on the slope and is halved when the slope is greater than 5%. The precipitation water that is not infiltrated or stored in the depression storage drains as surface runoff. In order to calculate the infiltration (Inf), an empirical calculation method is used in J2000. For this purpose, a maximum infiltration rate (maxINF in mm/d), defined by the user, against the relative saturation deficit of the soil (1 - soilsat) is taken into account:


 Inf = (1-soil_{sat}) \cdot maxINF \, \, \, \mathrm{[mm/d]}


The calculation of the relative saturation of the soil is carried out according to:


 soil_{sat} = \frac{(MPS_{act} + LPS_{act})}{(MPS_{max} + LPS_{max})} \, \, \, [-]


with


MPSact, MPSmax ... actual, maximum filling of the middle pore storage

LPSact, LPSmax ... actual, maximum filling of the large pore storage


Three infiltration scenarios are considered for the definition of the maximum infiltration rate. The setting of the maximum infiltration rate (maxINF), defined by the user, with the parameter Inf_winter is the normal case of the infiltration for the winter half year. Additionally, the special infiltration conditions for the convective precipitation with short duration and high intensity that occur in summer are taken into account via the parameter Inf_summer. Furthermore, with the setting of the parameter Inf_snow, the circumstance of decreased infiltration due to partly or complete frozen soil when snow cover occurs shall be taken into account. If the amount of water that is to be infiltrated is greater than the maximum infiltration rate (maxINF) set up by the user, the surplus water is stored in the depression storage or drains as surface runoff. Furthermore, the infiltration is influenced by the sealed grade of the surface. For a sealed grade greater than 80% (impervious areas IP>80) only 25% of the precipitation infiltrates; for a sealed grade less than 80% (impervious areas IP<80) 60% of the precipitation infiltrates. The infiltrated precipitation is allocated to the middle pore storage and the large pore storage whereby the saturation deficit of the MP is determining. The influx in the MPS (MPSin) results from the infiltrated precipitation (Inf) against its relative storage content (ΘMPS) as well as from a calibration coefficient (Dist coef) set up by the user. MPSin is calculated according to the following equation:


 MPS_{in} = Inf \cdot \left( 1-e^{(\frac{-1 \cdot Dist coef}{\Theta MPS})} \right) \, \, \, \mathrm{[mm]}


The infiltrated amount of precipitation water which is not absorbed by the MPS goes into the large pore storage (LPSin):


 LPS_{in} = Inf - MPS_{in} \, \, \, \mathrm{[mm]}


The value range of the calibration coefficient lies between zero (so that no water can flow into the MPS) and infinite. The discharge from the MPS is exclusively carried out via evapotranspiration (ETP), which is calculated from the current storage filling of the MPS and the potential ETP (see calculation of evapotranspiration).

The vertical (percolation) and lateral (interflow) water movement in the ground exclusively occurs in the LPS and is therefore dependent on the amount of the large pores. At first, the all in all runoff from the LPS (LPSout) which finally divides into the two mentioned runoff components needs to be calculated. It is calculated against the relative saturation of the soil (soilsat), the actual large storage content (LPSact) and a calibration coefficient (LPSout).


 LPS_{out} = (soil_{sat})^{LPSout} \cdot LPS_{act} \, \, \, \mathrm{[mm]}


The following allocation of the LPS runoff in the vertical and lateral (inter) flow direction is carried out against the slope and a user specific calibration factor (LatVertDist) which can take values between zero and infinite.


 perc = LPS_{out} \cdot (1- \tan{(Hangneigung)} \cdot LatVertDist) \, \, \, \mathrm{[mm]}

 inter = LPS_{out} \cdot (\tan{(Hangneigung)} \cdot LatVertDist) \, \, \, \mathrm{[mm]}


The percolation rate can be restricted by a user specific maximum, absolute, daily percolation rate (maxPerc). When the maximum percolation rate is crossed, the surplus water is led to the interflow. The maximum percolation rate results from the hydraulic permeability and the amount of large pores and macro pores and can be estimated only vaguely. The water that is in the LPS after a time step can diffuse in the MPS (LPS2MPS) when the actual LPS storage content (LPSact), the relative saturation of the MPS (ΘMPS) and the calibration coefficient Diff coef are considered:


 LPS2MPS = LPS_{act} \cdot \left( 1-e^{(\frac{-Diffcoef}{\Theta MPS})} \right) \, \, \, \mathrm{[mm]}


The calibration parameter Dist coef also possesses a theoretical value range from 0 to infinite. No diffusion takes place for values of 0. When the value 5 is crossed, nearly the entire water that remained in the large pores diffuses in the MPS.


While the percolation is limited by the maximum percolation rate, the discharge can be decelerated via the direct runoff (RD1) and the interflow (RD2) by user-defined retention coefficient (recRD1, recRD2):


 Abfluss = \frac{1}{rec} \cdot Abflusskomponente \, \, \, \mathrm{[mm]}


If recRD1 or recRD2 gets a greater value than1, the runoff is decelerated and the surplus water remains in the particular storages until the next time steps. Equally, a small value for k leads to an increase of the runoff.



Ground Water Module

The model concept of the ground water module in J2000 offers the viewing of the ground water runoff of all geologic formations that occur in the catchment area in consideration of the different storage and runoff behaviours. In the individual geologic units there is a distinction between the upper ground-water reservoir (RG1) in loose weathered material with high permeability and the lower ground-water reservoir (RG2) in fractures and clefts of the bedrock. Consequently, two basis runoff components are generated: a fast one from the upper ground-water reservoir and a slow one from the lower ground-water reservoir. The filling of the ground-water reservoir results from the vertical runoff component of the soil module. The emptying can be carried out by the lateral subterranean runoff components as well as capillary elevation in the unsaturated zone. The parameterization of ground-water reservoirs is carried out with the definition of the maximum storage capacity of the upper (maxRG2) and the lower (max RG1) ground water reservoir as well as a retention coefficient each for both reservoirs (recRG1) and (recRG2). Both parameters need to be determined for each geologic entity separately. The maximum storage capacity results from the product of the cavity and the thickness of the individual storage per m² unit area. The calculation of the water yield is carried out against the actual storage fillings as a linear drain function. The storage retention coefficients, which are to be seen as residence times of the water in the storage of interest, are taken into account as factor of the actual storage content (actRG1 and actRG2) for the calculation of the ground water runoff (outRG1 and outRG2):


out RG1 = \frac{1}{gwRG1Fact \cdot{recRG1}} \cdot{actRG1} \, \, \, \mathrm{[mm]}


out RG2 = \frac{1}{gwRG2Fact \cdot{recRG2}} \cdot{actRG2} \, \, \, \mathrm{[mm]}


In order to take the ground water reservoirs’ runoff dynamics in the catchment area into account, the ground water runoffs outRG1 and outRG2 can be multiplied by the calibration parameters gwRG1Fact or gwRG2Fact for the particular upper or lower ground water reservoir. The given parameter settings of these factors take the value one, whereby the value must not be less than zero. Generally, the runoff from the ground-water reservoirs is carried out faster when a small factor is given and slower when a big factor is given.

For a further adaptation to the catchment area, the calibration coefficient gwRG1RG2dist has to be set up. It influences the allocation of the percolation water from the soil module (perc) to both ground water reservoirs for each Hydrological Response Unit in consideration of the slope. The calibration parameter disttRG1RG2 is used as exponent in the calculation of the ground water influx (inRG1 and inRG2):


inRG1 = perc \cdot{(1 - ( 1 - \tan{(Hangneigung)))}} \cdot{gwRG1RG2dist} \, \, \, \mathrm{[mm]}


inRG2 = perc \cdot{(1- \tan{(Hangneigung)})} \cdot{gwRG1RG2dist} \, \, \, \mathrm{[mm]}


In addition to the mentioned parameters, the capillary elevation of the ground water (GW2MPS) has an important influence on the soil storage filling in plane areas with very high ground water level, e.g. in wide flood lands. In order to take that circumstance into account, the still free middle pore storage (deltaMPS), which results from the difference of the maximum middle pore storage and the actual middle pore storage volume, is multiplied by an empirically generated factor. The calibration coefficient gwCapRise as well as the relative saturation of the MPS (ThetaMPS) are used for the calculation of this factor:


GW2MPS = \Delta MPS \cdot{ \left(1  - e^{\frac{-gwCapRise}{ \theta MPS}} \right)} \, \, \, \mathrm{[mm]}


The calibration coefficient gwCapRise can take values from zero to infinite. However, the capillary elevation is forbidden when the coefficient takes the value zero.



Lateral Routing

The lateral routing module describes the water transfer within a flow cascade from HRU to HRU from the upper catchment area until the receiving stream. Since the retention mechanisms of the runoff are described by the other process modules, here only the HRU‘s influxes and discharges are allocated. The water transfer between the HRUs are seen as n:1 relation. Thus, an HRU can have several influxes but only one discharge. The order of the HRUs as receivers is determined by the topologic ID of the HRU dataset. In the HRU dataset it is also determined which HRUs finally drain in the receiving stream.



Reach Routing

The Reach Routing module describes the flow phenomena in the channel via a cinematic wave-like normal mode and the calculation of the rapidity of flow according to MANNING & STRICKLER. The only parameter (TA) that needs to be set is a routing coefficient which must be set by the user. It represents the travel time of the discharge wave which moves from the channel to the runoff after a precipitation event. Its value as well as the stream’s rapidity of flow (v) and the flow length (fl) are needed for the calculation of a runoff retention coefficient (Rk).


 Rk = \frac{v}{fl} \cdot TA \cdot 3600 \, \, \, [-]


At first, the rapidity of flow (vnew) with the roughness factor by Manning (M), the slope of the river bed (I) and the hydraulic radius (Rh) need to be set, however. The hydraulic radius (Rh) in turn is calculated from the cross section of the river part where the water flows through (A), from the flow passage (q), the rapidity of flow (v) and the river width (b). For this approach, an initial rapidity of flow (vinit) of 1 m/s is assumed, which is then iteratively abgeglichen with the new calculated rapidity of flow (vnew) until the deviation of both speeds are less than 0,001 m/s.


 Rh = \frac{A}{b+2 \frac{A}{b}} \, \, [m] mit:  A = \frac{q}{v_{init}} \, \, \mathrm{[m^2]}


 V_{new} = M \cdot Rh^{\frac{2}{3}} \cdot I^{\frac{1}{3}} \, \, \mathrm{[m^3/s]}


Finally, the discharge of the particular river part (qact) is calculated with the generated runoff retention coefficient (Rk).


 Ausfluss = q_{act} \cdot e^{(\frac{-1}{Rk})} \, \, \mathrm{[m^3/s]}


The higher the assumed value of TA, the faster the discharge wave moves within a particular period and the less water remains in the channel. The theoretical value range therefore corresponds to the one of positive numbers.

Personal tools
In other languages