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1. Objective

Runoff predictions with least effort and minimal data requirement.
Input Data:
Timeseries of

o Rainfall [, = (I}, I}, ..., I}) and
e Runoft Q); = (Q%,Q%,,Qf) where t € {1,2,...,T}.

With z; := (I, QQ;) we denote all measurements at timestep t.

Assume there 1s an unknown function

f (:Eta Lt—1y--- 7xt—k) — Q;f:—l T €,

which predicts future runoff )y, ;, but 1s disturbed by noise e.
Goal:

Find a function f which approximates f as good as possible.

3. Covariance Function

e Wide variety of covariance functions

e [ncorporate a priori decisions
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Figure 3: Random functions drawn from Gaussian Processes with different covariance functions and different
parameters

2. (GGaussian Processes
Think of a multivariate normal distribution with infinite many variables and
you get a gaussian process.

Properties:

(a) (b)

Figure 1: (a) Univariate normal distribution (b) Bivariate normal distribution

e Fully described by mean function m (x) and covariance function

k()

e Marginalization property:

p(az,y)w./\/< Z ; BT? )ip(x)NN(&aA)

e Conditional property:
a|l | A B
p([E,y>NN< b ’_BTC

) = p(aly) ~ N (a+BC (y—b), A~ BC'B")

This gives information about x, if ¥ is known.

Figure 2: Gaussian Process Regression Example - The shaded region represents the pointwise mean plus and
minus two times the standard deviation.

4. How to find a good covariance function?

e Measure of 'goodness’: Log Validation Density Loss £ (0)

S Ll yi — )" 1
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over Leave - One - Out Crossvalidation (LOO — C'V') and parameters 6

e Time - Efficient Calculation is possible

e Maximize L (A) over 6 via standard optimization method (e.g. Gradient
Descent)

e Parameters are interpretable

5. Automatic relevance determination(ARD)

e For cach input variable x; introduce scaling parameter [,

e Optimize [; in respect to L (0)

e A small value of [; means that variable x; has no influence and can be
eliminated

e Parameters can easily used to get a sensitivity analysis
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Figure 4: Model complexity and probability in comparison: Small values for [; produce simple models, which
can show bad fitting properties. On the other side, models with high length scales are more complex and tend
to overfit the data.

6. Procedure
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7. Results
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Other Catchment Areas

'This method was tested in other meso scale catchment areas in south eastern
cermany with a forecast horizon of 24h. It shows good results in all but one
case.
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