Wasser- und Stofftransportmodell J2000-S
Das Wasser- und Stofftransportmodell J2000-S ermöglicht die Simulation des Wasser- und Stickstoffhaushaltes von Mesoskaligen Einzugsgebieten. Das Modell stellt eine Erweiterung des Modells J2000 dar mit denen es die meisten Komponenten zur Beschreibung des hydrologischen Kreislaufs teilt. Zur Beschreibung des Stickstoffhaushalts werden die zusätzlichen Komponenten Bodentemperatur, Bodenstickstoffhaushalt, Grundwasserstickstoffhaushalt, Pflanzenwachstum und Landnutzungsmanagement beschrieben werden. Weiter
Bodenstickstoffmodul
Die Beschreibung des Bodenstickstoffhaushalts erfolgt analog zu der im Modell SWAT (Arnold et al. 1998). Hierbei werden in den einzelnen Bodenhorizonten die 5 Stickstoffpools für Nitrat, Ammonium, stabile organische Substanz, aktive organische Substanz, frische Pflanzenrest Biomasse unterschieden. Die Flüsse und Transformationen zwischen den Pools und außerhalb des Bodens: Nitrifikation, Denitrifikation, Mineralisation, Volatilation, Pflanzenaufnahme und Auswaschung, werden durch empirische Beziehungen in Abhängigkeit der Bodenfeuchte und Bodentemperatur berechnet. Der Nitratfluss wird äquivalent zum Wassertransport durch ein Routingverfahren zwischen den Teilflächen und zum Vorfluter weitergegeben (vgl. Abbildung 1).
Der Stickstoffeintrag über Düngung und Bestandesabfall wird, ebenso wie der Entzug durch die Pflanzen, vom Pflanzenwachstums- und Landnutzungsmanagementmodul bereitgestellt. Die mineralischen Einträge werden dem Ammoniumpool oder direkt dem Nitratpool zugeführt. Der organische Stickstoff geht entweder in die Pools für den Bestandesabfall oder in den aktiven organischen Pool ein. Der Abbau des Bestandesabfalls geht in Abhängigkeit vom C/N-Verhältnis in Anteilen in den Nitratpool oder in den aktiven organischen Pool ein. Der aktive organische Pool steht im Gleichgewicht mit dem stabilen organischen Pool. Der Nitratpool stellt die zentrale Verteilstelle für die Austräge in Form von Auswaschung, Pflanzenaufnahme und Denitrifikation dar. Die im Modul beschriebenen Prozesse finden in verschiedenen frei parametrisierbaren Bodenhorizonten statt. Hierbei beschränken sich die Zuführung von organischer Substanz und Dünger und die Abfuhr von Stickstoff mit dem Oberflächenabfluss auf den obersten Horizont. Gleichungen für die einzelnen Prozesse finden sich bei Neitsch et al. (2002).
Abbildung 1: Struktur des Bodenstickstoffmoduls
Das hier eingesetzte Stickstoffmodul enthält einige starke Vereinfachungen. So wird keine Pflanzenaufnahme aus dem Ammoniumpool ermöglicht. Weiterhin wird die Dekomposition der organischen Substanz direkt zu Nitrat simuliert, statt den Umweg über Ammonium zu gehen. Die N-Immobilisierung von mineralischem zu organischem Stickstoff in der Bodenzone wird komplett vernachlässigt. Auch der Wassertransport von Stickstoff wird stark generalisiert abgebildet. So findet eine vollständige Durchmischung des Stickstoffs in den einzelnen Speichern statt, anstelle Advektion und Dispersion zu berücksichtigen.
Zweck der Bodentemperatur
Für die Stoffhaushaltsmodellierung ist die Bodentemperatur eine bedeutende Steuergröße. Insbesondere mikrobiologische Prozesse wie Nitrifikation, Denitrifikation und Umsetzung von organischem Stickstoff in der Bodenzone werden stark von der vorherrschenden Temperatur beeinflusst.
Auch in dem hier erstellten Modell J2K-S spielt die Bodentemperatur bei der Berechnung der folgenden Prozesse eine Rolle (vgl. Bodenstickstoffmodul):
• Nitrifikation
• Volatilation
• Umsetzung organischer Substanz
• Abbau von Pflanzenresten
• Denitrifikation
Aufbau des Moduls
Die Bodentemperatur wird in Anlehnung an die empirischen Routinen von SWAT (Arnold et al. 1998) und EPIC (Williams et al. 1984) simuliert. Zunächst wird aus der Lufttemperatur und der Einstrahlung eine Bodenoberflächentemperatur für unbewachsenen Boden ermittelt. Diese Oberflächentemperatur wird durch Dämpfungsfaktoren, die die Wirkung von Biomasse und Schnee beschreiben, modifiziert. Die Temperatur der verschiedenen Bodenhorizonte wird zwischen der Bodenoberflächentemperatur als obere Randbedingung und der langjährigen mittleren Temperatur als untere Randbedingung ermittelt. Hierbei wird die Dämpfungswirkung des Bodens unter Berücksichtigung der Bodenfeuchte und der Lagerungsdichte bestimmt. Die Gleichungen für die einzelnen Prozesse finden sich bei Neitsch et al. (2002).
Abbildung 1: Struktur des Bodentemperaturmoduls
Abbildung 2: Ergebnisse der Bodentemperaturmodellierung für die Bodenoberfläche und in 40 cm Tiefe an einem Testhang bei Zeulenroda (Thüringen).
Die Abbildung zeigt die gemessene und modellierte Temperatur an der Bodenoberfläche (oberes Bild) sowie in 40 cm Tiefe (unteres Bild) für ein Testfeld in der nähe der Talsperre Zeulenroda. Es ist erkennbar, dass trotz gewisser Abweichungen der Temperaturverlauf gut nachvollzogen wird. Dies wird durch die hohen Bestimmtheitsmaße von rund 0.95 noch unterstrichen.
Die Beschreibung zur Simulation des Pflanzenwachstums ist für eine Vielzahl von hydrologischen und Stofftransport-Prozessen wichtig, wie z.B. für die Interzeption oder die Stickstoffaufnahme durch den Pflanzenbestand. Das Pflanzenwachstum wird prinzipiell über die Simulation der Blattflächenentwicklung (LAI), der Lichtinterzeption und der Transformation in Biomasse gesteuert und erfolgt in Anlehnung an SWAT (Arnold et al. 1998). Dabei wird zunächst von einem potenziellen, d.h. unter optimalen Bedingungen vorliegenden, Pflanzenwachstum ausgegangen, welches unter Einbeziehung von Stressfaktoren modifiziert wird.
Temperaturentwicklung und Wärmesummen
Wichtigster Faktor für die Entwicklung des Pflanzenbestandes ist die Temperatur, deren Kennwerte für jede Pflanze unterschiedlich sind. Daher verfügt jede Pflanze über eine eigene Basistemperatur, die erreicht werden muss, um ein entsprechendes Wachstum auszulösen. Das Wachstum erhöht sich über die Optimumtemperatur bis es beim Überschreiten der Maximaltemperatur deutlich eingeschränkt wird.
Der pflanzenspezifische Wachstumsverlauf erfolgt über die Generierung der Wärmesummen (‚heat units = HU’). Die zugrunde liegende Hypothese hierfür beruht auf der Annahme, dass Pflanzen einen spezifischen Wärmebedarf haben, der bis zum Erreichen des Erntezustands quantifizierbar ist. Eine ‚HU’ ist als eine phänologisch wirksame Temperatureinheit definiert. Sie ergibt sich aus der täglich akkumulierten Tagesdurchschnittstemperatur, die oberhalb der pflanzenspezifischen Basistemperatur liegt. Besitzt eine Maispflanze z.B. eine Basistemperatur von 7° C und unterliegt einer Tagestemperatur von 15° C, so ergeben sich für diesen Fall 15 – 7 = 8 HU's. Auf diese Weise werden, unter Bekanntgabe der Aussaat- und Erntezeitpunkte sowie der täglichen Mittelwertstemperaturen, die individuellen Wärmesummenentwicklungen für jede Landnutzungsart simuliert. Anhand der Wärmesummenentwicklung wird der Entwicklungsverlauf des Wurzelwachstums und des Blattflächenindex gesteuert. Hierbei wird vereinfachend davon ausgegangen, dass die Pflanzen zunächst ihre Enregie in die Blattentwicklung und das Wurzelwachstum investieren. Diese Vereinfachung bedeutet auch, dass die Entwicklung von Blättern und Wurzeln unabhängig von der Wasser- und Nährstoffversorgung simuliert wird. Weiterhin wird der Reifegrad der Pflanze, der den maximalen Stickstoffgehalt in der Biomasse beeinflusst, ausschließlich über die Temperatursumme gesteuert.
Biomasseentwicklung
Die Biomasseentwicklung selbst wird zunächst als potenzielle Biomasse simuliert. Steuernde Größe für die Biomasseentwicklung ist hierbei die photosyntetisch wirksame Strahlung. So wird für jeden Tag anhand der Strahlung und der Blattfläche ein potenzieller Biomassezuwachs ermittelt (vgl. Abbildung 1).
Abbildung 1: Aufbau des Pflanzenwachstumsmoduls
Dieser tägliche Biomassezuwachs wird anhand von Stressfaktoren auf den aktuellen Biomassezuwachs reduziert. Die Stressfaktoren sind hierbei Stickstoffversorgung, Temperatur und Wasserversorgung (vgl. Abbildung 2).
Abbildung 2: Aufbau des Wachstumsstresses
Der zu einem Punkt in Raum und Zeit am stärksten wirkende Stressfaktor bestimmt, nach dem Prinzip der limitierenden Faktoren, die aktuelle Biomasseentwicklung. Dies hat wiederum eine Rückwirkung auf den Stickstoffbedarf.
Die Beschreibung des Landnutzungsmanagements erfolgt in Anlehnung an die Methodik im Modell SWAT (Arnold et al. 1998). Das Landnutzungsmanagementmodul realisiert die Möglichkeit komplexe Fruchtfolgen in J2k-S darzustellen. Ausgehend von Managementoperationen wie Aussaat, Düngung und Ernte werden einzele Feldfrüchte charakterisiert. Wie in Abbildung 1 dargestellt, bezieht sich die Fruchtfolge auf eine aktuelle Pflanze, die sich wiederum aus den Pflanzenparametern und den einzelnen Managementoptionen zusammensetzt.
Abbildung 1: Funktionsschema des Landnutzungsmanagementmoduls
Die grundlegenden Bausteine (Basisobjekte) zur Beschreibung des Landnutzungsmanagements sind Bodenbearbeitung (bisher noch ohne Funktion), Düngung, Pflanzeneigenschaften und die Fruchtfolge selbst. Während die Managementoptionen Bodenbearbeitung und Düngung mit einfachen Parametern wie Durchmischungseffizienz, Bearbeitungstiefe, Düngemenge, Ammonium- und Nitratanteil auskommen, ist das Pflanzenobjekt mit zahlreichen Parametern versehen. Die Fruchtfolge ist dann nur noch eine einfache Liste mit der Reihenfolge der einzelnen Feldfrüchte (vgl. Abbildung 2).
Abbildung 2: Grundlegenden Bausteine (Basisobjekte)
Zur Erläuterung ist in Abbildung 3 ein Ausschnitt einer Managementparameterdatei dargestellt. In der ersten Zeile findet sich eine Bodenbearbeitungsmaßnahme. Darauf folgt die Aussaat des im Beispiel verwendeten Maises. Es finden weiterhin 3 Düngemaßnahmen mit verschiedenen Düngern statt. Weiterhin ist die Ernte mit dem geernteten Anteil der Biomasse angegeben. Der Rest verbleibt auf dem Feld und wird dem Residuen-Pool im Bodenstickstoffmodul zugeführt. Zum Abschluss findet in diesem Beispiel noch eine Bodenbearbeitung statt.
Abbildung 3: Aufbau einer Managementparameterdatei
Mit diesem Modul ist es möglich, die wesentlichen Tätigkeiten des pflanzenbaulichen Management flexibel abzubilden und Managementalternativen darzustellen.
Die Beschreibung der Dynamik des Stickstoffes im Grundwasser wird in Anlehnung an die in J2k verwendete Grundwasserdynamik durchgeführt. Hierbei wird die Stofffracht entsprechend der Verteilung des Wassers auf die beiden Grundwasserspeicher RG1 und RG2 aufgeteilt. Es werden für beide Grundwasserspeicher getrennt die Wasser- und Stoffgehalte ermittelt. Die Abgabe erfolgt analog zum Wasser und den ermittelten Gehalten. Es ist möglich eine Anfangsstickstoffkonzentration vorzugeben.
Auserdem wurde noch ein Dämpfungsfaktor implementiert, der die Änderung der Stickstoffgehalte im Speicher verzögert. Dieser, zur Kalibration verwendbare Faktor, ist für beide Grundwasserspeicher getrennt einstellbar. Er repräsentiert Durchmischungs- und Diffusionseffekte im Grundwasserleiter.
Zurück zu Modelle