Wasser- und Stofftransportmodell J2000-S
Das Wasser- und Stofftransportmodell J2000-S ermöglicht die Simulation des Wasser- und Stickstoffhaushaltes von Mesoskaligen Einzugsgebieten. Das Modell stellt eine Erweiterung des Modells J2000 dar mit denen es die meisten Komponenten zur Beschreibung des hydrologischen Kreislaufs teilt. Zur Beschreibung des Stickstoffhaushalts werden die zusätzlichen Komponenten Bodentemperatur, Bodenstickstoffhaushalt, Grundwasserstickstoffhaushalt, Pflanzenwachstum und Landnutzungsmanagement beschrieben werden. Weiter
Bodenstickstoffmodul
Die Beschreibung des Bodenstickstoffhaushalts erfolgt analog zu der im Modell SWAT (Arnold et al. 1998). Hierbei werden in den einzelnen Bodenhorizonten die 5 Stickstoffpools für Nitrat, Ammonium, stabile organische Substanz, aktive organische Substanz, frische Pflanzenrest Biomasse unterschieden. Die Flüsse und Transformationen zwischen den Pools und außerhalb des Bodens: Nitrifikation, Denitrifikation, Mineralisation, Volatilation, Pflanzenaufnahme und Auswaschung, werden durch empirische Beziehungen in Abhängigkeit der Bodenfeuchte und Bodentemperatur berechnet. Der Nitratfluss wird äquivalent zum Wassertransport durch ein Routingverfahren zwischen den Teilflächen und zum Vorfluter weitergegeben (vgl. Abbildung 1).
Der Stickstoffeintrag über Düngung und Bestandesabfall wird, ebenso wie der Entzug durch die Pflanzen, vom Pflanzenwachstums- und Landnutzungsmanagementmodul bereitgestellt. Die mineralischen Einträge werden dem Ammoniumpool oder direkt dem Nitratpool zugeführt. Der organische Stickstoff geht entweder in die Pools für den Bestandesabfall oder in den aktiven organischen Pool ein. Der Abbau des Bestandesabfalls geht in Abhängigkeit vom C/N-Verhältnis in Anteilen in den Nitratpool oder in den aktiven organischen Pool ein. Der aktive organische Pool steht im Gleichgewicht mit dem stabilen organischen Pool. Der Nitratpool stellt die zentrale Verteilstelle für die Austräge in Form von Auswaschung, Pflanzenaufnahme und Denitrifikation dar. Die im Modul beschriebenen Prozesse finden in verschiedenen frei parametrisierbaren Bodenhorizonten statt. Hierbei beschränken sich die Zuführung von organischer Substanz und Dünger und die Abfuhr von Stickstoff mit dem Oberflächenabfluss auf den obersten Horizont. Gleichungen für die einzelnen Prozesse finden sich bei Neitsch et al. (2002).
Abbildung 1: Struktur des Bodenstickstoffmoduls
Das hier eingesetzte Stickstoffmodul enthält einige starke Vereinfachungen. So wird keine Pflanzenaufnahme aus dem Ammoniumpool ermöglicht. Weiterhin wird die Dekomposition der organischen Substanz direkt zu Nitrat simuliert, statt den Umweg über Ammonium zu gehen. Die N-Immobilisierung von mineralischem zu organischem Stickstoff in der Bodenzone wird komplett vernachlässigt. Auch der Wassertransport von Stickstoff wird stark generalisiert abgebildet. So findet eine vollständige Durchmischung des Stickstoffs in den einzelnen Speichern statt, anstelle Advektion und Dispersion zu berücksichtigen.
Zweck der Bodentemperatur
Für die Stoffhaushaltsmodellierung ist die Bodentemperatur eine bedeutende Steuergröße. Insbesondere mikrobiologische Prozesse wie Nitrifikation, Denitrifikation und Umsetzung von organischem Stickstoff in der Bodenzone werden stark von der vorherrschenden Temperatur beeinflusst.
Auch in dem hier erstellten Modell J2K-S spielt die Bodentemperatur bei der Berechnung der folgenden Prozesse eine Rolle (vgl. Bodenstickstoffmodul):
• Nitrifikation
• Volatilation
• Umsetzung organischer Substanz
• Abbau von Pflanzenresten
• Denitrifikation
Aufbau des Moduls
Die Bodentemperatur wird in Anlehnung an die empirischen Routinen von SWAT (Arnold et al. 1998) und EPIC (Williams et al. 1984) simuliert. Zunächst wird aus der Lufttemperatur und der Einstrahlung eine Bodenoberflächentemperatur für unbewachsenen Boden ermittelt. Diese Oberflächentemperatur wird durch Dämpfungsfaktoren, die die Wirkung von Biomasse und Schnee beschreiben, modifiziert. Die Temperatur der verschiedenen Bodenhorizonte wird zwischen der Bodenoberflächentemperatur als obere Randbedingung und der langjährigen mittleren Temperatur als untere Randbedingung ermittelt. Hierbei wird die Dämpfungswirkung des Bodens unter Berücksichtigung der Bodenfeuchte und der Lagerungsdichte bestimmt. Die Gleichungen für die einzelnen Prozesse finden sich bei Neitsch et al. (2002).
Abbildung 1: Struktur des Bodentemperaturmoduls
Abbildung 2: Ergebnisse der Bodentemperaturmodellierung für die Bodenoberfläche und in 40 cm Tiefe an einem Testhang bei Zeulenroda (Thüringen).
Die Abbildung zeigt die gemessene und modellierte Temperatur an der Bodenoberfläche (oberes Bild) sowie in 40 cm Tiefe (unteres Bild) für ein Testfeld in der nähe der Talsperre Zeulenroda. Es ist erkennbar, dass trotz gewisser Abweichungen der Temperaturverlauf gut nachvollzogen wird. Dies wird durch die hohen Bestimmtheitsmaße von rund 0.95 noch unterstrichen.
Zurück zu Komponenten
Zurück zu Komponenten